首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinases as targets for anti-parasitic chemotherapy   总被引:4,自引:0,他引:4  
Parasitic protozoa infecting humans have a staggering impact on public health, especially in the developing world. Furthermore, several protozoan species are major pathogens of domestic animals and have a considerable impact on food production. In many instances, the parasites have developed resistance against available chemotherapeutic agents, making the search for alternative drugs a priority. In line with the current interest in protein kinases inhibitors as potential drugs against a variety of diseases, the possibility that protein kinases may represent targets for novel anti-parasitic agents is being explored. Research into parasite protein kinases has benefited greatly from genome and EST sequencing projects, with the genomes of a few species fully sequenced (notably that of the human malaria parasite Plasmodium falciparum) and several more under way. The overall picture that emerged from research in this area shows that the phylogenetic isolation of parasitic protozoa is reflected by atypical structural and functional properties of many of their protein kinase homologues. Likewise, evidence is emerging, which suggests that the organisation of some otherwise well-conserved signal transduction pathways is divergent in some parasitic species. The differences between protein kinases of a parasite and their homologues in its host cell suggest that specific inhibition of the former can be achieved. The development of anti-parasitic drugs based on protein kinase inhibition is being pursued following two avenues: one consists of screening chemical libraries on recombinant enzymes; several protein kinases from parasitic protozoa are now available for this approach. The second approach relies on the identification of the molecular targets of kinase inhibitors which display anti-parasitic properties. This has led to promising developments in a few instances, in particular regarding PKG as a drug target against Eimeria and Toxoplasma, and purvalanol B, a purine-based CDK inhibitor which appears to affect unexpected targets in several protozoan parasites. The recent resolution of the structure of a Plasmodium protein kinase complexed with small inhibitory molecules opens the way to a rational approach towards the design of anti-parasitic drugs based on kinase inhibition.  相似文献   

2.
Dysregulation of cell signalling processes caused by an enhanced activity of protein kinases mainly contributes to cancer progression. Protein kinase inhibitors have been established as promising drugs that inhibit such overactive protein kinases in cancer cells. The formation of metastases, which makes a therapy difficult, remains a great challenge for cancer treatment. Recently, breast tumor kinase (Brk) was discovered as novel and interesting target for a cancer therapy because Brk participates in both cell dysregulation and metastasis. We discovered 4-anilino substituted α-carboline compounds as a novel class of highly active Brk inhibitors. In the current work, structure–activity relationships are discussed including docking results obtained for 4-anilino α-carbolines. A first profiling of selective kinase inhibition and a proof of concept for the antiproliferative effects is demonstrated. These results qualify the compounds as a promising class of novel antitumor agents.  相似文献   

3.
Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy. Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons. On the other hand, it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR), making up the uPA system, are over-expressed in a variety of human tumors and tumor cell lines. The expression of uPA system is highly correlated with tumor invasion and metastasis. To exploit these characteristics in the design of tumor cell-selective cytotoxins, two prominent bacterial protein toxins, i.e., the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins. These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA system-expressing tumor cells, thereby killing these cells. This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents. It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.  相似文献   

4.
Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy.Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons.On the other hand,it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR),making up the uPA system,are overexpressed in a variety of human tumors and tumor cell lines.The expression of uPA system is highly correlated with tumor invasion and metastasis.To exploit these characteristics in the design of tumor cell-selective cytotoxins,two prominent bacterial protein toxins,i.e.,the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins.These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA systemexpressing tumor cells,thereby killing these cells.This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents.It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.  相似文献   

5.

Background  

Protein kinases play crucial roles in cell growth, differentiation, and apoptosis. Abnormal function of protein kinases can lead to many serious diseases, such as cancer. Kinase inhibitors have potential for treatment of these diseases. However, current inhibitors interact with a broad variety of kinases and interfere with multiple vital cellular processes, which causes toxic effects. Bioinformatics approaches that can predict inhibitor-kinase interactions from the chemical properties of the inhibitors and the kinase macromolecules might aid in design of more selective therapeutic agents, that show better efficacy and lower toxicity.  相似文献   

6.
Cyclin-dependent kinases (CDKs) are essential in the control of cell cycle progression. Inhibition of CDKs represents a new approach for pharmacological intervention in the treatment of a variety of proliferative diseases, especially cancer. Based on the crystal structure of CDK2 in complex with an imidazole indolinone compound 1 (SU9516), lead optimization through modeling, synthesis, and SAR studies has led to the discovery of a novel series of pyrrolyllactone and pyrrolyllactam indolinones as potent CDK2 inhibitors.  相似文献   

7.
The Abelson (c-Abl) proto-oncogene encodes a highly conserved nonreceptor protein tyrosine kinase that plays a role in cell proliferation, differentiation, apoptosis and cell adhesion. c-Abl represents a specific anti-cancer target in prostate cancer as aberrant activity of this kinase has been implicated in the stimulation of prostate cancer growth and progression. However, the mechanism of regulation of c-Abl is not known. Here we report that Abl kinases are regulated by a novel microRNA, miR-4723, in prostate cancer. Expression profiling of miR-4723 expression in a cohort of prostate cancer clinical specimens showed that miR-4723 expression is widely attenuated in prostate cancer. Low miR-4723 expression was significantly correlated with poor survival outcome and our analyses suggest that miR-4723 has significant potential as a disease biomarker for diagnosis and prognosis in prostate cancer. To evaluate the functional significance of decreased miR-4723 expression in prostate cancer, miR-4723 was overexpressed in prostate cancer cell lines followed by functional assays. miR-4723 overexpression led to significant decreases in cell growth, clonability, invasion and migration. Importantly, miR-4723 expression led to dramatic induction of apoptosis in prostate cancer cell lines suggesting that miR-4723 is a pro-apoptotic miRNA regulating prostate carcinogenesis. Analysis of putative miR-4723 targets showed that miR-4723 targets integrin alpha 3 and Methyl CpG binding protein in addition to Abl1 and Abl2 kinases. Further, we found that the expression of Abl kinase is inversely correlated with miR-4723 expression in prostate cancer clinical specimens. Also, Abl1 knockdown partially phenocopies miR-4723 reexpression in prostate cancer cells suggesting that Abl is a functionally relevant target of miR-4723 in prostate cancer. In conclusion, we have identified a novel microRNA that mediates regulation of Abl kinases in prostate cancer. This study suggests that miR-4723 may be an attractive target for therapeutic intervention in prostate cancer.  相似文献   

8.
A platform for specifically modulating kinase-dependent signaling using peptides derived from the catalytic domain of the kinase is presented. This technology, termed KinAce, utilizes the canonical structure of protein kinases. The targeted regions (subdomain V and subdomains IX and X) are analyzed and their sequence, three-dimensional structure, and involvement in protein-protein interaction are highlighted. Short myristoylated peptides were derived from the target regions of the tyrosine kinases c-Kit and Lyn and the serine/threonine kinases 3-phosphoinositide-dependent kinase-1 (PDK1) and Akt/protein kinase B (PKB). For each kinase an active designer peptide is shown to selectively inhibit the signaling of the kinase from which it is derived, and to inhibit cancer cell proliferation in the micromolar range. This technology emerges as an applicable tool for deriving sequence-based selective inhibitors for a broad range of protein kinases as hits that may be further developed into drugs. Moreover, it enables identification of novel kinase targets for selected therapeutic indications as demonstrated in the KinScreen application.  相似文献   

9.
Deminoff SJ  Howard SC  Hester A  Warner S  Herman PK 《Genetics》2006,173(4):1909-1917
Protein kinases mediate much of the signal transduction in eukaryotic cells and defects in kinase function are associated with a variety of human diseases. To understand and correct these defects, we will need to identify the physiologically relevant substrates of these enzymes. The work presented here describes a novel approach to this identification process for the cAMP-dependent protein kinase (PKA) in Saccharomyces cerevisiae. This approach takes advantage of two catalytically inactive PKA variants, Tpk1K336A/H338A and Tpk1R324A, that exhibit a stable binding to their substrates. Most protein kinases, including the wild-type PKA, associate with substrates with a relatively low affinity. The binding observed here was specific to substrates and was dependent upon PKA residues known to be important for interactions with peptide substrates. The general utility of this approach was demonstrated by the ability to identify both previously described and novel PKA substrates in S. cerevisiae. Interestingly, the positions of the residues altered in these variants implicated a particular region within the PKA kinase domain, corresponding to subdomain XI, in the binding and/or release of protein substrates. Moreover, the high conservation of the residues altered and, in particular, the invariant nature of the R324 position suggest that this approach might be generally applicable to other protein kinases.  相似文献   

10.
MOTIVATION: Evolutionary and structural conservation patterns shared by more than 500 of identified protein kinases have led to complex sequence-structure relationships of cross-reactivity for kinase inhibitors. Understanding the molecular basis of binding specificity for protein kinases family, which is the central problem in discovery of cancer therapeutics, remains challenging as the inhibitor selectivity is not readily interpreted from chemical proteomics studies, neither it is easily discernable directly from sequence or structure information. We present an integrated view of sequence-structure-binding relationships in the tyrosine kinome space in which evolutionary analysis of the kinases binding sites is combined with computational proteomics profiling of the inhibitor-protein interactions. This approach provides a functional classification of the binding specificity mechanisms for cancer agents targeting protein tyrosine kinases. RESULTS: The proposed functional classification of the kinase binding specificities explores mechanisms in which structural plasticity of the tyrosine kinases and sequence variation of the binding-site residues are linked with conformational preferences of the inhibitors in achieving effective drug binding. The molecular basis of binding specificity for tyrosine kinases may be largely driven by conformational adaptability of the inhibitors to an ensemble of structurally different conformational states of the enzyme, rather than being determined by their phylogenetic proximity in the kinome space or differences in the interactions with the variable binding-site residues. This approach provides a fruitful functional linkage between structural bioinformatics analysis and disease by unraveling the molecular basis of kinase selectivity for the prominent kinase drugs (Imatinib, Dasatinib and Erlotinib) which is consistent with structural and proteomics experiments.  相似文献   

11.
Yuryev A  Wennogle LP 《Genomics》2003,81(2):112-125
We have performed an exhaustive unbiased yeast two-hybrid analysis to identify interaction partners of two human Raf kinase isoforms, A-Raf and C-Raf, using their N-terminal regulatory domain as "bait." A total of 20 different human proteins were found to interact with Raf isoforms. Several of these interactions were novel and an extensive bioinformatics evaluation was performed for each. The novel putative interactions include a signalosome component, TOPK/PBK kinase, and two new putative protein phosphatases. The cysteine-rich zinc-binding domain (CRD) of Raf was found to interact with all 20 proteins and to achieve isoform-specific interactions. Since similar putative CRDs are present in a variety of protein serine-threonine kinases, the data suggest that the CRD may function as a major protein-protein interaction domain of these kinases. We propose possible functional consequences of these novel Raf interactions.  相似文献   

12.
Despite the variety of modern therapies against human brain cancer, in its most aggressive form of glioblastoma multiforme (GBM) it is a still deadly disease with a median survival of approximately 1 year. Over the past 2 decades, molecular profiling of low- and high-grade malignant brain tumours has led to the identification and molecular characterisation of mechanisms leading to brain cancer development, maintenance and progression. Genetic alterations occurring during gliomagenesis lead to uncontrolled tumour growth stimulated by deregulated signal transduction pathways. The characterisation of hyperactivated signalling pathways has identified many potential molecular targets for therapeutic interference in human gliomas. Overexpressed or mutated and constitutively active kinases are attractive targets for low-molecular-weight inhibitors. Although the first attempts with mono-therapy using a single targeted kinase inhibitor were not satisfactory, recent studies based on the simultaneous targeting of several core hyperactivated pathways show great promise for the development of novel therapeutic approaches. This review focuses on genetic alterations leading to the activation of key deregulated pathways in human gliomas.  相似文献   

13.
The identification of cancer stem cells(CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells,CSCs also display high resistance to radiotherapy and chemotherapy with genotoxic agents. Thus, conventional therapy may shrink the tumor volume but cannot eliminate cancer. Eradiation of CSCs represents a novel therapeutic strategy. CSCs possess a highly efficient DNA damage response(DDR) system, which is considered as a contributor to the resistance of these cells from exposures to DNA damaging agents. Targeting of enhanced DDR in CSCs is thus proposed to facilitate the eradication of CSCs by conventional therapeutics. To achieve this aim, a better understanding of the cellular responses to DNA damage in CSCs is needed. In addition to the protein kinases and enzymes that are involved in DDR, other processes that affect the DDR including chromatin remodeling should also be explored.  相似文献   

14.
Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules, aiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization.  相似文献   

15.
The phosphatidylinositol 3' kinase (PI3K)-signaling pathway plays a critical role in a variety of cellular responses such as modulation of cell survival, glucose homeostasis, cell division, and cell growth. PI3K generates important lipid second messengers-phosphatidylinositides that are phosphorylated at the 3' position of their inositol ring head-group. These membrane restricted lipids act by binding with high affinity to specific protein domains such as the pleckstrin homology (PH) domain. Effectors of PI3K include molecules that harbor such domains such as phosphoinositide-dependent kinase (PDK1) and protein kinase B (PKB), also termed Akt. The mammalian genome encodes three different PKB genes (alpha, beta, and gamma; Akt1, 2, and 3, respectively) and each is an attractive target for therapeutic intervention in diseases such as glioblastoma and breast cancer. A second family of three protein kinases, termed serum and glucocorticoid-regulated protein kinases (SGKs), is structurally related to the PKB family including regulation by PI3K but lack a PH domain. However, in addition to PH domains, a second class of 3' phosphorylated inositol phospholipid-binding domains exists that is termed Phox homology (PX) domain: this domain is found in one of the SGKs (SGK3). Here, we summarize knowledge of the three SGK isoforms and compare and contrast them to PKB with respect to their possible importance in cellular regulation and potential as therapeutic targets.  相似文献   

16.
Plant genomes encode a variety of protein kinases, and while some are functional homologues of animal and fungal kinases, others have a novel structure. This review focuses on three groups of unusual membrane-associated plant protein kinases: receptor-like protein kinases (RLKs), calcium-dependent protein kinases (CDPKs), and histidine protein kinases. Animal RLKs have a putative extracellular domain, a single transmembrane domain, and a protein kinase domain. In plants, all of the RLKs identified thus far have serine/threonine signature sequences, rather than the tyrosine-specific signature sequences common to animals. Recent genetic experiments reveal that some of these plant kinases function in development and pathogen resistance. The CDPKs of plants and protozoans are composed of a single polypeptide with a protein kinase domain fused to a C-terminal calmodulin-like domain containing four calcium-binding EF hands. No functional plant homologues of protein kinase C or Ca2+/calmodulin-dependent protein kinase have been identified, and no animal or fungal CDPK homologues have been identified. Recently, histidine kinases have been shown to participate in signaling pathways in plants and fungi. ETR1, an Arabidopsis histidine kinase homologue with three transmembrane domains, functions as a receptor for the plant hormone ethylene. G-protein-coupled receptors, which often serve as hormone receptors in animal systems, have not yet been identified in plants. Received: 18 August 1997/Revised: 23 December 1997  相似文献   

17.
Nicotine is not only a major component in tobacco but is also a survival agonist that inhibits apoptosis induced by diverse stimuli including chemotherapeutic drugs. However, the intracellular mechanism(s) involved in nicotine suppression of apoptosis is unclear. Bcl2 is a potent antiapoptotic protein and tumor promotor that is expressed in both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cells. It is possible that nicotine may regulate Bcl2 to stimulate cell survival. Here we report that nicotine can induce Bcl2 phosphorylation exclusively at the serine 70 site in association with prolonged survival of SCLC H82 cells expressing wild-type but not the phosphorylation-deficient S70A mutant Bcl2 after treatment with chemotherapeutic agents (i.e. cisplatin or VP-16). Nicotine induces activation of PKC alpha and the MAPKs ERK1 and ERK2, which are physiological Bcl2 kinases. Furthermore, ET-18-OCH3, a specific phospholipase C (PLC) inhibitor, blocks nicotine-stimulated Bcl2 phosphorylation and promotes apoptosis, suggesting that PLC may be involved in nicotine activation of Bcl2 kinases. Using a genetic approach, the gain-of-function S70E mutant, which mimics Ser(70) site phosphorylation in the flexible loop domain, potently enhances chemoresistance in SCLC cells. Thus, nicotine-induced cell survival results, at least in part, from a mechanism that involves Bcl2 phosphorylation. Therefore, novel therapeutic strategies for lung cancer in which Bcl2 is expressed may be used to abrogate the anti-apoptotic activity of Bcl2 by inhibiting multiple upstream nicotine-activated pathways.  相似文献   

18.
Dual inhibitors of the closely related receptor tyrosine kinases insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR) are promising therapeutic agents in cancer. Here, we report an unusually selective class of dual inhibitors of IGF-1R and IR identified in a parallel screen of known kinase inhibitors against a panel of 300 human protein kinases. Biochemical and structural studies indicate that this class achieves its high selectivity by binding to the ATP-binding pocket of inactive, unphosphorylated IGF-1R/IR and stabilizing the activation loop in a native-like inactive conformation. One member of this compound family was originally reported as an inhibitor of the serine/threonine kinase ERK, a kinase that is distinct in the structure of its unphosphorylated/inactive form from IR/IGF-1R. Remarkably, this compound binds to the ATP-binding pocket of ERK in an entirely different conformation to that of IGF-1R/IR, explaining the potency against these two structurally distinct kinase families. These findings suggest a novel approach to polypharmacology in which two or more unrelated kinases are inhibited by a single compound that targets different conformations of each target kinase.  相似文献   

19.
Cyclin-dependent kinases (CDKs) play important roles in regulating cell cycle progression, and altered cell cycles resulting from over-expression or abnormal activation of CDKs observed in many human cancers. As a result, CDKs have become extensive studied targets for developing chemical inhibitors for cancer therapies; however, protein kinases share a highly conserved ATP binding pocket at which most chemical inhibitors bind, therefore, a major challenge in developing kinase inhibitors is achieving target selectivity. To identify cell growth inhibitors with potential applications in cancer therapy, we used an integrated approach that combines one-pot chemical synthesis in a combinatorial manner to generate diversified small molecules with new chemical scaffolds coupled with growth inhibition assay using developing zebrafish embryos. We report the successful identification of a novel lead compound that displays selective inhibitory effects on CDK2 activity, cancer cell proliferation, and tumor progression in vivo. Our approaches should have general applications in developing cell proliferation inhibitors using an efficient combinatorial chemical genetic method and integrated biological assays. The novel cell growth inhibitor we identified should have potential as a cancer therapeutic agent.  相似文献   

20.
PFTK1, also known as PFTAIRE1, CDK14, is a novel member of Cdc2-related serine/threonine protein kinases. Recent studies show that PFTK1 is highly expressed in several malignant tumors such as hepatocellular carcinoma, esophageal cancer, breast cancer, and involved in regulation of cell cycle, tumors proliferation, migration, and invasion that further influence the prognosis of tumors. However, the expression and physiological significance of PFTK1 in gastric cancer remain unclear. In this study, we analyzed the expression and clinical significance of PFTK1 by Western blot in 8 paired fresh gastric cancer tissues, nontumorous gastric mucosal tissues and immunohistochemistry on 161 paraffinembedded slices. High PFTK1 expression was correlated with the tumor grade, lymph node invasion as well as Ki-67. Through Cell Counting Kit (CCK)-8 assay, flow cytometry, colony formation, wound healing and transwell assays, the vitro studies demonstrated that PFTK1 overexpression promoted proliferation, migration and invasion of gastric cancer cells, while PFTK1 knockdown led to the opposite results. Our findings for the first time supported that PFTK1 might play an important role in the regulation of gastric cancer proliferation, migration and would provide a novel promising therapeutic strategy against human gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号