首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeng QL  Chiang H  Hu GL  Mao GG  Fu YT  Lu DQ 《Bioelectromagnetics》2003,24(2):134-138
We have previously demonstrated that exposure of Chinese hamster lung (CHL) cells to 50 Hz magnetic fields (MFs) and/or 12-O-tetradecanoylphorbol-3-acetate (TPA)-inhibited gap junctional intercellular communication (GJIC). To explore and compare the mechanisms of GJIC inhibition induced by extremely low frequency (ELF) MF and TPA, the number and localization of connexin 43 (C x 43) were studied. The localization of C x 43 was determined with indirect immunofluorescence histochemical analysis and detected by confocal microscopy after exposing CHL cells to 50 Hz sinusoidal magnetic field at 0.8 mT for 24 h without or with TPA (5 ng/ml) for the last 1 h. The C x 43 levels in nuclei and in cytoplasm were examined by Western blotting analysis. The results showed that the cells exposed to MF and/or TPA displayed individual plaques at regions of intercellular contact, which were fewer than the normal cells in number, while the number of C x 43 in cytoplasm increased and congregated near the nuclei. Western blot analysis further demonstrated the quantity of changes in location of Cx43. These results suggest that reduction of C x 43 at regions of intercellular contact may be one of the mechanisms of GJIC inhibition induced by ELF MF.  相似文献   

2.
Inhibition of gap junctional intercellular communication (GJIC) is an important event in the multistage process of carcinogenesis. Our previous study showed that extremely low frequency (ELF) magnetic fields (MFs) inhibit GJIC, and enhance the suppression of GJIC induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) using a microinjection technique. In the present study, the inhibition of GJIC by ELF MFs and its threshold were further studied with fluorescence recovery after photobleaching (FRAP) technique. The results indicated that the FRAP technique is more sensitive in detecting the changes of GJIC than microinjection, and the threshold level is 0.4 mT for GJIC suppression by 50 Hz MFs. In addition, 0.2 mT, or more than 0.2 mT ELF can enhance the inhibition of GJIC induced by TPA. We concluded that MFs thus might act as a cancer promoter or work in synergy with other cancer promoters. The data also provide grounds to revise the reference standard of ELF MFs exposure.  相似文献   

3.
Zeng Q  Ke X  Gao X  Fu Y  Lu D  Chiang H  Xu Z 《Bioelectromagnetics》2006,27(4):274-279
Previously, we have reported that exposure to 50 Hz coherent sinusoidal magnetic fields (MF) for 24 h inhibits gap junction intercellular communication (GJIC) in mammalian cells at an intensity of 0.4 mT and enhances the inhibition effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) at 0.2 mT. In the present study, we further explored the effects of incoherent noise MF on MF-induced GJIC inhibition. GJIC was determined by fluorescence recovery after photobleaching (FRAP) with a laser-scanning confocal microscope. The rate of fluorescence recovery (R) at 10 min after photobleaching was adopted as the functional index of GJIC. The R-value of NIH3T3 cells exposed to 50 Hz sinusoidal MF at 0.4 mT for 24 h was 30.85 +/- 14.70%, while the cells in sham exposure group had an R-value of 46.36 +/- 20.68%, demonstrating that the GJIC of NIH3T3 cells was significantly inhibited by MF exposure (P < .05). However, there were no significant differences in the R-values of the sham exposure, MF-plus-noise MF exposure (R: 49.58 +/- 19.38%), and noise MF exposure groups (R: 46.74 +/- 21.14%) (P > .05), indicating that the superposition of a noise MF alleviated the suppression of GJIC induced by the 50 Hz MF. In addition, although MF at an intensity of 0.2 mT synergistically enhanced TPA-induced GJIC inhibition (R: 24.90 +/- 13.50% vs. 35.82 +/- 17.18%, P < .05), further imposition of a noise MF abolished the synergistic effect of coherent MF (R: 32.51 +/- 18.37%). Overall, the present data clearly showed that although noise MF itself had no effect on GJIC of NIH3T3 cells, its superposition onto a coherent sinusoidal MF at the same intensity abolished MF-induced GJIC suppression. This is the first report showing that noise MF neutralizes 50 Hz MF-induced biological effect by using a signaling component as the test endpoint.  相似文献   

4.
The effects of extremely low frequency (ELF) magnetic field on gap junctional intercellular communication (GJIC), protein levels, and phosphorylation of connexin43 (Cx43) were studied in NIH3T3 cells. The suppression of GJIC by 24 h, 50 Hz, 0.8 mT ELF magnetic field, 2 h, 3 ng/ml 12-O-tetradecanoylphorbol-13-acetate (TPA), or ELF combined with TPA treatment was confirmed by the fluorescence recovery after photobleaching (FRAP) analysis with a confocal microscope. The results showed that ELF or TPA exposure induced 50-60% inhibition of GJIC (P < 0.01). ELF combined with TPA enhanced the inhibition of GJIC. Western blot analysis using Cx43 specific antibodies showed obviously decreasing non phosphorylated Cx43 (P(0)) induced by ELF and/or TPA exposure. On the other hand, cells treated with ELF and/or TPA displayed a hyperphosphorylated Cx43 band (P(3)). However, there was no obvious changes in the level of Cx43 protein. The results implied that the P(3) band appeared to result from phosphorylation of P(0). But it remains possible that upon the ELF exposure P(0) is converted to P(1), P(2) or both and that P(3) is formed from P(1) or P(2) resulting in the observed hyperphosphorylation pattern. From the present study, we conclude that ELF magnetic field inhibits GJIC and the main mechanism is the hyperphosphorylation of Cx43.  相似文献   

5.
Protein phosphorylation is an extremely important and widely used mechanism of cellular regulation. Here, the effects of 50 Hz magnetic fields (MFs) on tyrosine phosphorylation were studied. A Chinese hamster lung (CHL) cell line was exposed to 50 Hz magnetic fields at two intensities (0.4 mT and 0.8 mT) for different exposure durations, and western blot analysis was used to measure the degree of tyrosine phosphorylation of cellular proteins. Results showed that both 0.4 mT and 0.8 mT 50 Hz magnetic fields could affect the protein tyrosine phosphorylation in cultured cells. Both intensities could affect the tyrosine phosphorylation of 38 and 97.4 kDa proteins. In addition, 0.4 mT could affect tyrosine phosphorylation of 61.7, 105, and 112 kDa proteins, and 0.8 mT affected the tyrosine phosphorylation of 79 and 150 kDa proteins. Moreover, all the tyrosine phosphorylation changes of these proteins were time-dependent. The findings from this study demonstrated that under these experimental conditions, there was evidence that protein tyrosine phosphorylation was a possible process for ELF-EMF producing bioeffects.  相似文献   

6.
The naturally occurring stilbene/alexin trans-resveratrol (trans-3,5, 4'-trihydroxystilbene) is a promising agent for the prevention of cancer. We investigated the effect of resveratrol on gap-junctional intercellular communication (GJIC) in WB-F344 rat liver epithelial cells because inhibition of GJIC is an important mechanism of tumor promotion. Seventeen to 50 microM resveratrol increased GJIC significantly by a factor of 1.3 compared with solvent vehicle controls, when the WB-F344 cells were exposed to resveratrol for 6 h. Most tumor promoters, including the phorbol ester TPA and the insecticide DDT, block GJIC. Resveratrol at 17-50 microM also significantly prevented down-regulation of GJIC by TPA and DDT, by a factor of 2.7 and 1.8, respectively. This recovery of GJIC from TPA inhibition was partly correlated with hindered hyperphosphorylation of Cx43. In conclusion, resveratrol was found to enhance GJIC and counteract the effects of tumor promoters on GJIC, and this is likely a mechanism that contributes to the antipromotional and anticarcinogenic properties of resveratrol.  相似文献   

7.
In our previous studies, we found that 50 Hz magnetic fields (MFs) could induce the phosphorylation of stress-activated protein kinase (SAPK) and enhance its enzymatic activity. In order to clarify the relationship between MF exposure and the SAPK pathway clearly, we studied the effects of 50 Hz MF exposure on phosphorylation (activation) of SEK1/MKK4 (the upstream kinase of SAPK). A Chinese hamster lung (CHL) cell line was exposed to 50 Hz MFs at two intensities (0.4 and 0.8 mT) for different durations, and Western blot analysis was used to measure the degree of phosphorylation (activation), and nonphosphorylation (non-activation) of SEK1/MKK4 with corresponding antibodies. The results showed that the exposures at both intensities could not induce the phosphorylation of SEK1/MKK4. However, treatment with high osmotic pressure NaCl could induce the phosphorylation of SEK1/MKK4 in cultured cells. It is suggested that 50 Hz MFs may activate the SAPK through a kinase other than SEK1/MKK4.  相似文献   

8.
This work was conducted by using a rapid and simple technique, scrape-loading and dye transfer (SLDT) to study GJIC of human stomach carcinoma MGC-803 cells in comparison with normal WB rat liver cells, Chinese hamster V79 cells and a primary culture of chicken embryonic myoblasts. Cells were plated and grown overnight to confluency in 35 mm plastic dishes in appropriate media. Monolayered cells, after rinsing in PBS, were immersed in the mixed 0.05% Lucifer Yellow (MW 457.2) and 0.05% Rhodamine-Dextran (MW. 10,000) in PBS. Scrape loading was performed by utilization of a sharp knife. Cells were incubated in dye solution for an additional 3 min. at room temperature before rinsing with PBS and observation under fluorescent microscope. Cells competent in GJIC showed transfer of Lucifer Yellow from the injured border to interior cells while the high MW. Rhodamine-Dextran dye stayed in situ in the loaded cells. Cells incompetent in GJIC did not show dye transfer; both Lucifer Yellow and Rhodamine-Dtranex were retained in the original loaded cells of the injured border. The background cell monolayer away from the scrape line was dark indicating that none of the dye molecules could permeate through cell membrane in the conditions described. It was found that human stomach carcinoma MGC-803 cells lack GJIC; Chinese hamster V79 cells showed modest GJIC; WB rat liver cells and chick myoblasts showed marked GJIC. The tumor promoter, TPA(1-100 ng/ml), inhibits GJIC of the normal cells efficiently. An inhibitor of calmodulin, Trifluoperazine (TFP) (5-20 microM), evidently increased the GJIC of stomach carcinoma MGC-803 cells. Noteworthy is that TFP in the dosage range used in SLDT experiments showed inhibitory effect on cell growth and DNA synthesis of MGC-803 cells documented in parallel experiments. These results indicate that the lack of GJIC in MGC-803 cells correlates with their uncontrolled cell proliferation; the improvement of GJIC correlates with the inhibition of tumor cell proliferation. TPA inhibition of GJIC in normal cells in this work confirmed previous reports. Interestingly, it was found that when V79 cells were treated with TFP and then shifted to medium containing both TFP and TPA, GJIC was blocked. It is likely that TPA overcomes the effect of TFP on GJIC of MGC-803 cells. These results provide further evidence for the role of GJIC in carcinogenesis, specially the tumor promotion phase.  相似文献   

9.
Protein phosphorylation is one of the important processes of cell signal transduction pathways. To study the effects of 50 Hz electromagnetic field (EMF) on the cell signal transduction process, the phosphorylation of stress-activated protein kinase (SAPK/JNK) extracted from Chinese hamster lung (CHL) cells exposed to 0.4 and 0.8 mT 50 Hz EMF for various durations was measured. A solid-phase kinase assay was used to measure the enzymatic activity of SAPK extracted from cells exposed to 50 Hz EMF at the same magnetic flux density and for only 15 min. The results showed that both 0.4 and 0.8 mT could induce the phosphorylation of SAPK, the phosphorylation of SAPK presented a time-dependent course, and there was a difference between the two intensities. The phosphorylated SAPK enhanced its enzymatic activity. All the data indicated that 50 Hz EMF could activate SAPK in a time- and intensity-dependent manner. The biological effects caused by 50 Hz EMF maybe related to the SAPK signal transduction pathway.  相似文献   

10.
Effects of 50 Hz electromagnetic fields on phagocytosis and free radical production were examined in mouse bone marrow-derived macrophages. Macrophages were in vitro exposed to electromagnetic fields using different magnetic field densities (0.5-1.5 mT). Short-time exposure (45 min) to electromagnetic fields resulted in significantly increased phagocytic uptake (36.3% +/- 15.1%) as quantified by measuring the internalization rate of latex beads. Stimulation with 1 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) showed the same increased phagocytic activity as 1 mT electromagnetic fields. However, co-exposure to electromagnetic fields and TPA showed no further increase of bead uptake, and therefore we concluded that because of the absence of additive effects, the electromagnetic fields-induced stimulation of mouse bone marrow-derived macrophages does not involve the protein kinase C signal transduction pathway. Furthermore, a significant increased superoxide production after exposure to electromagnetic fields was detected.  相似文献   

11.
黄芫花提取物对V79细胞和WB肝细胞的生物...:1....   总被引:3,自引:0,他引:3  
A Chinese herb, wikstroemia Chamaedaphen (WC) extract, recently has been shown to be a potential tumor promoting agent on uterine cervical carcinoma induced by HSV-2 or MCA in mice. To determine whether the tumor promoting effects of WC extract were mediated through inhibition of gap junctional intercellular communication (GJIC) with relation to cellular growth, experiments were conducted on Chinese hamster V79 cells and rat WB liver cells by utilization of SLDT method for GJIC detection and cell growth curve examination, 3H-TdR incorporation, mitotic index (MI) and Flow Cytometry (FCM) methods. TPA was used for comparative purpose. WC extract inhibited GJIC and stimulated cell growth in a dose (2-200 micrograms/ml) and time (0-72 hr)-dependent manner in both cell lines. Both WC extract and TPA treatments increased V79 cell growth rate. The average cell doubling-time was decreased from 36.5 hr in control V79 cells to 28.2 hr in WC extract (10 micrograms/ml) and 20.9 hr in TPA (50 ng/ml) treatment by the 3rd day. Stimulating effect of both drugs on DNA synthesis of V79 cells was demonstrated. The results of FCM and MI indicated that the cell number of M-phase cells was increased after drug treatment. It is suggested that (1) tumor promoting effect of WC extract might be mediated through inhibition of GJIC: (2) inhibition of GJIC is closely correlated with increased cell growth rate and entry of cell division cycle.  相似文献   

12.
The increasing prevalence of extremely low frequency electromagnetic fields (ELF-EMFs) exposure has raised considerable public concern regarding the potential hazardous effects of ELF-EMFs on male reproductive function. Increasing evidence indicates that miRNAs are necessary for spermatogenesis and male fertility. However, the regulation of miRNA expression and the roles of miRNAs in response to ELF-EMFs remain unclear. In our study, mouse spermatocyte-derived GC-2 cells were intermittently exposed to a 50 Hz ELF-EMF for 72 h (5 min on/10 min off) at magnetic field intensities of 1 mT, 2 mT and 3 mT. MiR-26b-5p was differentially expressed in response to different magnetic field intensities of ELF-EMFs. The host gene CTDSP1 showed an unmethylation status in GC-2 cells at different magnetic field intensities of ELF-EMF exposure. MiR-26b-5p had no significant, obvious influence on the cell viability, apoptosis or cell cycle of GC-2 cells. However, the overexpression of miR-26b-5p significantly decreased the percentage of G0/G1 phase cells and slightly increased the percentage of S phase cells compared to the sham group that was exposed to a 50 Hz ELF-EMF. Computational algorithms identified Cyclin D2 (CCND2) as a direct target of miR-26b-5p. MiR-26b-5p and a 50 Hz ELF-EMF altered the expression of CCND2 at both the mRNA and protein levels. Overexpressed miR-26b-5p in GC-2 cells can change the mRNA expression of CCND2 following 50 Hz ELF-EMF at 3 mT. These findings demonstrate that miR-26b-5p could serve as a potential biomarker following 50 Hz ELF-EMF exposure, and miR-26b-5p-CCND2-mediated cell cycle regulation might play a pivotal role in the biological effects of ELF-EMFs.  相似文献   

13.
14.
We have shown that 50 Hz sinusoidal magnetic fields within the 5-10 micro Tesla (μT) rms range cause an intensity-dependent reduction in nerve growth factor (NGF) stimulation of neurite outgrowth (NO) in PC-12 cells. Here we report on the frequency dependence of this response over the 15-70 Hz range at 5 Hz intervals. Primed PC-12 cells were plated in collagen-coated, 60 mm plastic petri dishes with or without 5 ng/ml NGF and were exposed to sinusoidal magnetic fields for 22 h in a CO2 incubator at 37 °C. One 1,000-turn coil, 20 cm in diameter, generated vertically oriented magnetic fields. The dishes were stacked on the center axis of the coil to provide a range of intensities between 3.5 and 9.0 μT rms. The flux density of the ambient DC magnetic field was 37 μT vertical and 19 μT horizontal. The assay consisted of counting over 100 cells in the central portion (radius ≤0.3 cm) of each dish and scoring cells positive for NO. Sham exposure of cells treated identically with NGF demonstrated no difference in the percentage of cells with NO between exposed and magnetically shielded locations within the incubator. Analysis of variance demonstrated flux density-dependent reductions in NGF-stimulated NO over the 35-70 Hz frequency range, whereas frequencies between 15 Hz and 30 Hz produced no obvious reduction. The results also demonstrated a relative maximal sensitivity of cells at 40 Hz with a possible additional sensitivity region at or above 70 Hz. These findings suggest a biological influence of perpendicular AC/DC magnetic fields different from those identified by the ion parametric resonance model, which uses strictly parallel AC/DC fields. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Enhanced expression of neuron derived orphan receptor (NOR-1) gene was observed by exposure of Chinese hamster ovary K1 (CHO-K1) cells to an extremely low frequency magnetic field (ELFMF) of 50 Hz at 400 mT, but not at 5 mT. The enhanced expression, reaching the maximum at 6 h, was transient and reduced to the control level after exposure to 400 mT ELFMF for 24 h. The NOR-1 expression induced by treatment with forskolin and TPA was further enhanced by the simultaneous treatment with 400 mT ELFMF, in which the maximum response was at 3 h. The NOR-1 expression by these treatments was induced more earlier than that by 400 mT ELFMF alone. When cells were treated with an inhibitor of the protein kinase C (calphostin C or crocetin) and Ca2+ entry blockers (nifedipin and dantrolen) during the 400 mT ELFMF exposure, the enhanced NOR-1 expression was not observed. Exposure of CHO-K1 cells to the high-density 400 mT ELFMF may affect the signal transduction in the cells, resulting in the enhanced NOR-1 gene expression.  相似文献   

16.
Jia C  Zhou Z  Liu R  Chen S  Xia R 《Bioelectromagnetics》2007,28(3):197-207
Atomic force microscopy (AFM), transmission electron microscopy (TEM), and confocal laser scanning microscopy were used to investigate the effects of a 50 Hz 0.4 mT magnetic field (MF) on the clustering of purified epidermal growth factor receptors (EGFRs) and EGFRs in Chinese hamster lung (CHL) cell membrane. The results demonstrate that exposing purified EGFRs to the MF for 30 min induces receptor clustering. The peak height of apparent clusters increased from 1.42 +/- 0.18 (sham-exposed) to 3.08 +/- 0.38 nm (exposed) while the mean half-width increased from 21.7 +/- 2.2 to 33.0 +/- 4.0 nm. A similar effect was also observed by TEM. Treatment of purified EGFR with PD153035 (PD), an EGFR-specific tyrosine kinase (TK) inhibitor, inhibited the MF-induced EGFR clustering of the purified proteins, an effect also observed for the receptors in cell membrane in the absence of EGF. These results strongly suggest that the 50 Hz 0.4 mT MF interferes with the EGFR signaling pathway, most likely by interacting with the cytoplasmic TK domain.  相似文献   

17.
Chaga mushroom (Inonotus obliquus) has continued to receive attention as a folk medicine with indications for the treatment of cancers and digestive diseases. The anticarcinogenic effect of Chaga mushroom extract was investigated using a model system of gap junctional intercellular communication (GJIC) in WB-F344 normal rat liver epithelial cells. The cells were pre-incubated with Chaga mushroom extracts (5, 10, 20 microg/ml) for 24 h and this was followed by co-treatment with Chaga mushroom extracts and TPA (12-O-tetradecanoylphorbol-13-acetate, 10 ng/ml) for 1 h. The inhibition of GJIC by TPA (12-O-tetradecanoylphorbol-13-acetate), promoter of cancer, was prevented with treatment of Chaga mushroom extracts. Similarly, the increased phosphorylated ERK1/2 and p38 protein kinases were markedly reduced in Chaga mushroom extracts-treated cells. There was no change in the JNK kinase protein level, suggesting that Chaga mushroom extracts could only block the activation of ERK1/2 and p38 MAP kinase. The Chaga mushroom extracts further prevented the inhibition of GJIC through the blocking of Cx43 phosphorylation. Indeed cell-to-cell communication through gap junctional channels is a critical factor in the life and death balance of cells because GJIC has an important function in maintaining tissue homeostasis through the regulation of cell growth, differentiation, apoptosis and adaptive functions of differentiated cells. Thus Chaga mushroom may act as a natural anticancer product by preventing the inhibition of GJIC through the inactivation of ERK1/2 and p38 MAP kinase.  相似文献   

18.
The binding properties of the G-protein coupled receptor (GPCR) serotonin 5-HT1B receptor were studied under exposure to AC (50 and 400 Hz) and DC magnetic fields (MF) in rat brain membranes. This was an attempt at replicating the positive findings of Massot et al. In saturation experiments using [3H]5-HT, 1-h exposures at 1.1 mT(rms) 50 Hz caused statistically significant increases in both the K(D) and B(max) binding parameters, from 1.74 +/- 0.3 to 4.51 +/- 0.86 nM and from 1428 +/- 205 to 2137 +/- 399 CPM, respectively, in good agreement with previous results. Exposure of the membranes at 400 Hz 0.675 mT(rms) did not elicit a larger increase in K(D) in spite of a much larger induced current density. DC fields (1.1 and 11 mT) had a lesser effect compared to AC fields at low values of K(Dsham), but decreased the affinity at higher values of K(Dsham). Modeling of the receptor-ligand-G protein interactions using the extended ternary complex model yielded good fits for all our data and that of Massot et al., showing that the AC field may act by decreasing the ability of the G-protein to alter the ligand-receptor affinity. The hypothesis is that the bipolar nature of the AC field explains the different nature of the effects observed with AC and DC exposures. These findings constitute one of the few documented pieces of evidence for cell-free effects of DC and extremely low frequency (ELF) AC MFs in the mT range.  相似文献   

19.
20.
The present study was undertaken to verify a hypothesis that exposure of the cells to static or 50 Hz magnetic fields (MF) and simultaneous treatment with a known oxidant, ferrous chloride, may affect the oxidative deterioration of DNA molecules.The comet assay was chosen for the assessment of DNA damage. The experiments were performed on isolated rat lymphocytes incubated for 3h in Helmholtz coils at 7 mT static or 50 Hz MF. During MF exposure, part of the cell samples were incubated with 0.01 microM H(2)O(2) and another one with 10 microg/ml FeCl(2,) the rest serving as controls.Lymphocyte exposure to MF at 7 mT did not increase the number of cells with DNA damage in the comet assay. Incubation of lymphocytes with 10 microg/ml FeCl(2) did not produce a detectable damage of DNA either. However, when the FeCl(2)-incubated lymphocytes were simultaneously exposed to 7 mT MF, the number of damaged cells was significantly increased and reached about 20% for static MF and 15% for power frequency MF. In the control samples about 97% of the cells did not have any DNA damage.It is not possible at present to offer a reasonable explanation for the findings of this investigation - the high increase in the number of lymphocytes showing symptoms of DNA damage in the comet assay, following simultaneous exposure to the combination of two non-cytotoxic factors -10 microg/ml FeCl(2) and 7 mT MF. In view of the obtained results we can only hypothesise that under the influence of simultaneous exposure to FeCl(2) and static or 50 Hz MF, the number of reactive oxygen species generated by iron cations may increase substantially. Further studies will be necessary to confirm this hypothesis and define the biological significance of the observed effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号