首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently demonstrated that increased blood-CNS barrier permeability and CNS inflammation in a conventional mouse model of experimental allergic encephalomyelitis are dependent upon the production of peroxynitrite (ONOO(-)), a product of the free radicals NO* and superoxide (O2*(-)). To determine whether this is a reflection of the physiological contribution of ONOO(-) to an immune response against a neurotropic pathogen, we have assessed the effects on adult rats acutely infected with Borna disease virus (BDV) of administration of uric acid (UA), an inhibitor of select chemical reactions associated with ONOO(-). The pathogenesis of acute Borna disease in immunocompetent adult rats results from the immune response to the neurotropic BDV, rather than the direct effects of BDV infection of neurons. An important stage in the BDV-specific neuroimmune response is the invasion of inflammatory cells into the CNS. UA treatment inhibited the onset of clinical disease, and prevented the elevated blood-brain barrier permeability as well as CNS inflammation seen in control-treated BDV-infected rats. The replication and spread of BDV in the CNS were unchanged by the administration of UA, and only minimal effects on the immune response to BDV Ags were observed. These results indicate that the CNS inflammatory response to neurotropic virus infection is likely to be dependent upon the activity of ONOO(-) or its products on the blood-brain barrier.  相似文献   

2.
Borna disease virus (BDV) is a negative-strand RNA virus which produces persistent infection in a variety of experimental animals. In the rat, the presence or absence of clinical signs of Borna disease, a characteristic, biphasic neurobehavioral illness, depends on host-related factors. A window of opportunity exists after birth wherein inoculation with BDV produces a persistently infected rat without signs of Borna disease or encephalitis (persistent, tolerant infection-newborn [PTI-NB] rat). Although immunopathological destruction of the nervous system does not occur in the PTI-NB rat, significant alterations in the development of the nervous system were noted, including site-specific lysis of neurons. Unlike the case with other pharmacologically produced, persistent, tolerant BDV infections, adoptive transfer of spleen cells from BDV-infected rats did not produce disease in the PTI-NB rats. PTI-NB rats developed Borna disease after being connected by parabiosis to rats with Borna disease. Bone marrow transplantation experiments revealed that bone marrow cells from PTI-NB rats produced Borna disease in lethally irradiated, BDV-infected recipient rats. Bone marrow from PTI-NB rats contained a complement of inflammatory cells capable of inducing Borna disease. Thus, the loss of BDV-specific cellular immunity appeared to occur after the release of cells from the bone marrow.  相似文献   

3.
Borna disease virus (BDV) is a nonsegmented negative-strand RNA virus with a tropism for neurons. Infection with BDV causes neurological diseases in a wide variety of animal species. Although it is known that the virus spreads from neuron to neuron, assembled viral particles have never been visualized in the brains of infected animals. This has led to the hypothesis that BDV spreads as nonenveloped ribonucleoproteins (RNP) rather than as enveloped viral particles. We assessed whether the viral envelope glycoprotein (GP) is required for neuronal dissemination of BDV by using primary cultures of rat hippocampal neurons. We show that upon in vitro infection, BDV replicated and spread efficiently in this system. Despite rapid virus dissemination, very few infectious viral particles were detectable in the culture. However, neutralizing antibodies directed against BDV-GP inhibited BDV spread. In addition, interference with BDV-GP processing by inhibiting furin-mediated cleavage of the glycoprotein blocked virus spread. Finally, antisense treatment with peptide nucleic acids directed against BDV-GP mRNA inhibited BDV dissemination, marking BDV-GP as an attractive target for antiviral therapy against BDV. Together, our results demonstrate that the expression and correct processing of BDV-GP are necessary for BDV dissemination in primary cultures of rat hippocampal neurons, arguing against the hypothesis that the virus spreads from neuron to neuron in the form of nonenveloped RNP.  相似文献   

4.
Borna disease virus (BDV) causes acute and persistent infections in various vertebrates. During recent years, BDV-specific serum antibodies, BDV antigen, and BDV-specific nucleic acid were found in humans suffering from psychiatric disorders. Furthermore, viral antigen was detected in human autopsy brain tissue by immunohistochemical staining. Whether BDV infection can be associated with psychiatric disorders is still a matter of debate; no direct evidence has ever been presented. In the present study we report on (i) the detection of BDV-specific nucleic acid in human granulocyte cell fraction from three different psychiatric patients and (ii) the isolation of infectious BDV from these cells obtained from a patient with multiple psychiatric disorders. In leukocyte preparations other than granulocytes, either no BDV RNA was detected or positive PCR results were obtained only if there was at least 20% contamination with granulocytes. Parts of the antigenome of the isolated virus were sequenced, demonstrating the close relationship to the prototype BDV strains (He/80 and strain V) as well as to other human virus sequences. Our data provide strong evidence that cells in the granulocyte fraction represent the major if not the sole cell type harboring BDV-specific nucleic acid in human blood and contain infectious virus. In contrast to most other reports of putative human isolates, where sequences are virtually identical to those of the established laboratory strains, this isolate shows divergence in the region previously defined as variable in BDV from naturally infected animals.  相似文献   

5.
Borna disease virus (BDV)-induced immunopathology in mice is most prominent in strains carrying the major histocompatibility complex H-2k allele and is mediated by CD8(+) T cells that are directed against the viral nucleoprotein p40. We now identified the highly conserved octamer peptide TELEISSI, located between amino acid residues 129 and 136 of BDV p40, as a potent H-2K(k)-restricted cytotoxic T-cell (CTL) epitope. When added to the culture medium of L929 target cells, TELEISSI conferred sensitivity to lysis by CTLs isolated from brains of BDV-infected MRL mice with acute neurological disease. Vaccinia virus-mediated expression of a p40 variant with mutations in the two K(k)-specific anchor residues of the TELEISSI peptide (p40(E130K,I136T)) did not sensitize L929 target cells for lysis by BDV-specific CTLs, whereas expression of wild-type p40 did. Furthermore, unlike vaccination with wild-type p40, vaccination of persistently infected symptomless B10.BR mice with p40(E130K,I136T) did not result in central nervous system inflammation and neurological disease. These results demonstrate that TELEISSI is the immunodominant CTL epitope of BDV p40 in H-2k mice.  相似文献   

6.
Borna disease virus (BDV) infection of Lewis rats is the most studied animal model of Borna disease, an often fatal encephalomyelitis. In this experimental model, BDV-specific CD8(+) cytotoxic T lymphocytes (CTLs) play a prominent role in the immunopathogenesis of infection by the noncytolytic, persistent BDV. Of the six open reading frames of BDV, CTLs to BDV X (p10) and the L-polymerase have never been studied. In this study, we used plasmid immunization to investigate the CTL response to BDV X and N. Plasmid-based immunization was a potent CTL inducer in Lewis rats. Anti-X CTLs were primed by a single injection of the p10 cDNA. Two codominant p10 epitopes, M(1)SSDLRLTLL(10) and T(8)LLELVRRL(16), associated with the RT1.A(l) major histocompatibility complex class I molecules of the Lewis rats, were identified. In addition, immunization with a BDV p40-expressing plasmid confirmed the previously reported RT1.A(l)-restricted A(230)SYAQMTTY(238) peptide as the CTL target for BDV N. In contrast to the CTL responses, plasmid vaccination was a poor inducer of an antibody response to p10. Three injections of a recombinant eukaryotic expression plasmid of BDV p10 were needed to generate a weak anti-p10 immunoglobulin M response. However, the antibody response could be optimized by a protein boost after priming with cDNA.  相似文献   

7.
Neutralizing antibodies in Borna disease virus-infected rats.   总被引:4,自引:2,他引:2       下载免费PDF全文
Borna disease is a neurologic syndrome caused by infection with a nonsegmented, negative-strand RNA virus, Borna disease virus. Infected animals have antibodies to two soluble viral proteins, p40 and p23, and a membrane-associated viral glycoprotein, gp18. We examined the time course for the development of neutralization activity and the expression of antibodies to individual viral proteins in sera of infected rats. The appearance of neutralizing activity correlated with the development of immunoreactivity to gp18, but not p40 or p23. Monospecific and monoclonal antibodies to native gp18 and recombinant nonglycosylated gp18 were also found to have neutralizing activity and to immunoprecipitate viral particles or subparticles. These findings suggest that gp18 is likely to be present on the surface of the viral particles and is likely to contain epitopes important for virus neutralization.  相似文献   

8.
Borna disease virus (BDV) is a highly neurotropic, noncytolytic virus. Experimentally infected B10.BR mice remain healthy unless specific antiviral T cells that infiltrate the infected brain are triggered by immunization. In contrast, infected MRL mice spontaneously mount an antiviral T-cell response that can result in meningoencephalitis and neurological disease. The antiviral T cells may, alternatively, eliminate the virus without inducing disease if they are present in sufficient numbers before the virus replicates to high titers. Since the immune response of H-2(k) mice is directed mainly against the epitope TELEISSI located in the viral nucleoprotein N, we generated BDV mutants that feature TQLEISSI in place of TELEISSI. We show that adoptive transfer of BDV N-specific CD8 T cells induced neurological disease in B10.BR mice persistently infected with wild-type BDV but not with the mutant virus expressing TQLEISSI. Surprisingly, the mutant virus replicated less well in adult MRL wild-type mice than in mutant mice lacking mature CD8 T cells. Furthermore, when MRL mice were infected with the TQLEISSI-expressing BDV mutant as newborns, neurological disease was observed, although at a lower rate and with slower kinetics than in mice infected with wild-type virus. These results confirm that TELEISSI is the major CD8 T-cell epitope in H-2(k) mice and suggest that unidentified minor epitopes are present in the BDV proteome which are recognized rather efficiently by antiviral T cells if the dominant epitope is absent.  相似文献   

9.
10.
Experimental Borna disease virus (BDV) infection of rats and natural infection of horses and sheep leads to severe central nervous system disease based on immunopathological pathways. The virus replicates slowly, and the cellular immune response results in immunopathology. CD8(+) T cells exert effector cell functions, and their activity results in the destruction of virus-infected cells. Previously, Oldach and colleagues (D. Oldach, M. C. Zink, J. M. Pyper, S. Herzog, R. Rott, O. Narayan, and J. E. Clements, Virology 206:426-434, 1995) have reported protection against Borna disease after inoculation of high-dose cell-adapted BDV. Here we show that the outcome of the infection, i.e., immunopathology versus protection, is simply dependent on the amount of virus used for infection. High-dose BDV (10(6) FFU) triggers an early virus-specific reaction of the immune system, as demonstrated by strong cellular and humoral responses. In particular, the early presence and function of nucleoprotein-specific CD8(+) T cells could be demonstrated in the brain. We present evidence that in a noncytolytic and usually persistent virus infection, high-dose input virus mediates early control of the pathogen due to an efficient induction of an antiviral immune mechanism. From these data, we conclude that immune reactivity, in particular the cytotoxic T-cell response, determines whether the virus is controlled with prevention of the ensuing immunopathological disease or whether a persistent infection is established.  相似文献   

11.
12.
Effect of Immune Priming on Borna Disease   总被引:2,自引:2,他引:0       下载免费PDF全文
Borna disease virus (BDV) is a neurotropic virus with a broad host and geographic range. Lewis rats were immunized against BDV with a recombinant vaccinia virus expressing the BDV nucleoprotein and were later infected with BDV to evaluate protection against Borna disease (BD). Relative to animals that were not immunized, immunized animals had a decreased viral burden after challenge with infectious virus, more marked inflammation, and aggravated clinical disease. These data suggest that a more robust immune response in Borna disease can reduce viral load at the expense of increased morbidity.  相似文献   

13.
Borna disease virus (BDV) is a negative-strand RNA virus that infects the central nervous systems (CNS) of warm-blooded animals and causes disturbances of movement and behavior. The basis for neurotropism remains poorly understood; however, the observation that the distribution of infectious virus in immunocompetent rats is different from that in immunoincompetent rats indicates a role for the immune system in BDV tropism: whereas in immunocompetent rats virus is restricted to the central, peripheral, and autonomic nervous systems, immunoincompetent rats also have virus in nonneural tissues. In an effort to examine the influence of the humoral immune response on BDV pathogenesis, we examined the effects of passive immunization with neutralizing antiserum in immunoincompetent rats. Serum transfer into immunoincompetent rats did not prevent persistent CNS infection but did result in restriction of virus to neural tissues. These results indicate that neutralizing antibodies may play a role in preventing generalized infection with BDV.  相似文献   

14.
L Stitz  M Sobbe    T Bilzer 《Journal of virology》1992,66(6):3316-3323
Borna disease is a virus-induced, immunopathological encephalomyelitis in which CD4+ cells and macrophages dominate the pathological picture. However, significant numbers of CD8+ cells have been morphologically identified in perivascular infiltrates as well. To determine the contribution of different T-cell subsets to the pathogenesis of Borna disease, virus-infected rats were treated with monoclonal antibodies specific for CD4+ and CD8+ cells. Both types of monoclonal antibodies were able to significantly decrease or even prevent the local inflammatory reaction in the brain if given early during the infection. However, CD8-specific monoclonal antibodies appeared to be more effective than antibodies directed against CD4+ cells. Treatment initiated 4 days postinfection did not result in inhibition of encephalitis and disease. Virus titers in the brain of infected rats treated with T-cell-specific antibodies did not differ from titers in untreated infected control animals. The results indicate an important functional role of CD8+ cells, in addition to CD4+ cells, in the pathogenesis of Borna disease.  相似文献   

15.
Animals immunized with the human immunodeficiency virus type 1 gp160 glycoprotein or certain recombinant envelope components develop potent virus-neutralizing activity. This activity is principally due to antibodies directed toward a hypervariable region of gp120 between cysteine residues 302 and 337 and is virus isolate specific. These antisera, as well as two neutralizing monoclonal antibodies directed against the same hypervariable sequence, do not appreciably block gp120 from binding CD4. In contrast, serum samples from infected humans possess high titers of antibodies that block gp120-CD4 binding; these titers approximately correlate with the serum neutralization titers. Our results suggest that there are at least two targets on the envelope glycoprotein for virus neutralization. The target responsible for the broader neutralizing activity of human serum may be a conserved region of gp120 involved in CD4 binding. The antibodies directed at the hypervariable region of the envelope inhibit a different step in virus infection which is subsequent to receptor binding. The extent to which these two different epitopes of gp120 may be involved in protection against human immunodeficiency virus infection is discussed.  相似文献   

16.
Targeted expression of biologically active interleukin-12 (IL-12) in astrocytes of the central nervous system (CNS) results in spontaneous neuroimmunological disease of aged mice. Borna disease virus (BDV) can readily multiply in the mouse CNS but does not trigger disease in most strains. Here we show that a large percentage of IL-12 transgenic mice developed severe ataxia within 5 to 10 weeks after infection with BDV. By contrast, no disease developed in mock-infected IL-12 transgenic and wild-type mice until 4 months of age. Neurological symptoms were rare in infected wild-type animals, and if they occurred, these were milder and appeared later. Histological analyses showed that the cerebellum of infected IL-12 transgenic mice, which is the brain region with strongest transgene expression, contained large numbers of CD4(+) and CD8(+) T cells as well as lower numbers of B cells, whereas other parts of the CNS showed only mild infiltration by lymphocytes. The cerebellum of diseased mice further showed severe astrogliosis, calcifications and signs of neurodegeneration. BDV antigen and nucleic acids were present in lower amounts in the inflamed cerebellum of infected transgenic mice than in the noninflamed cerebellum of infected wild-type littermates, suggesting that IL-12 or IL-12-induced cytokines exhibited antiviral activity. We propose that BDV infection accelerates the frequency by which immune cells such as lymphocytes and NK cells enter the CNS and then respond to IL-12 present in the local milieu causing disease. Our results illustrate that infection of the CNS with a virus that is benign in certain hosts can be harmful in such normally disease-resistant hosts if the tissue is unfavorably preconditioned by proinflammatory cytokines.  相似文献   

17.
In rats persistently infected with Borna disease virus (BDV), severe neurologic disorders and occasional death are the consequences of a T cell-mediated immunopathologic reaction in the brain. It is shown here that the pathologic alterations in the brain and as a result, Borna Disease (BD) can be prevented if animals are treated with the immunosuppressive drug cyclosporine A (CSA) under the following optimal conditions: greater than or equal to 25 mg/kg/day of CSA, started before infection and given for 4 wk. Rats treated with lower doses of CSA, for shorter periods or after infection displayed encephalitic lesions and developed BD. When CSA treatment was begun even as early as 1 day after infection, encephalitis and disease were not influenced. Immune spleen cells passively transferred into CSA-treated rats induced the disease in the recipients, whereas lymphoid cells from CSA-treated rats did not induce BD in infected cyclophosphamide-treated recipients. Antibodies were not involved in BD because rats treated with CSA revealed an inhibition of the synthesis of virus-specific antibodies for all regimens of treatment used (whether successful in preventing BD or not). After i.v. challenge of CSA-treated healthy rats with BDV, antiviral antibodies at low titers could be induced in some animals; however, no encephalitis or disease symptoms could be observed at any time after infection. The same was true for rats reinfected intracerebrally with BDV after discontinuation of CSA. These results support the hypothesis that unresponsiveness and even tolerance can be induced by CSA in the presence of the foreign Ag, demonstrating the beneficial effect of this immunosuppressive drug during a persistent viral infection.  相似文献   

18.
Fine Structure and Morphogenesis of Borna Disease Virus   总被引:8,自引:2,他引:6       下载免费PDF全文
Borna disease virus (BDV), a negative nonsegmented single-stranded RNA virus, has not been fully characterized morphologically. Here we present what is to our knowledge the first data on the fine ultrastructure and morphogenesis of BDV. The supernatant of MDCK cells persistently infected with BDV treated with n-butyrate contained many virus-like particles and more BDV-specific RNA than that of untreated samples. The particles were spherical, enveloped, and approximately 130 nm in diameter; had spikes 7 nm in length; and reacted with BDV p40 antibody. A thin nucleocapsid, 4 nm in width, was present peripherally in contrast to the thick nucleocapsid of hemagglutinating virus of Japan. The BDV particles reproduced by budding on the cell surface.  相似文献   

19.
20.
The nucleoprotein (N) of Borna disease virus (BDV) is the major target of the disease-inducing antiviral CD8 T-cell response in the central nervous system of mice. We established two transgenic mouse lines which express BDV-N in either neurons (Neuro-N) or astrocytes (Astro-N). Despite strong transgene expression, neurological disease or gross behavioral abnormalities were not observed in these animals. When Neuro-N mice were infected as adults, replication of BDV was severely impaired and was restricted to brain areas with a low density of transgene-expressing cells. Notably, the virus failed to replicate in the transgene-expressing granular and pyramidal neurons of the hippocampus (which are usually the preferred host cells of BDV). When Neuro-N mice were infected within the first 5 days of life, replication of BDV was not suppressed in most neurons, presumably because the onset of transgene expression in the brain occurred after these cells became infected with BDV. Astro-N mice remained susceptible to BDV infection, but they were resistant to BDV-induced neurological disorder. Unlike their nontransgenic littermates, Neuro-N mice with persistent BDV infection did not develop neurological disease after immunization with a vaccinia virus vector expressing BDV-N. In contrast to the situation in wild-type mice, this treatment also failed to induce N-specific CD8 T cells in the spleens of both transgenic mouse lines. Thus, while resistance to BDV infection in N-expressing neurons appeared to result from untimely expression of a viral nucleocapsid component, the resistance to BDV-induced neuropathology probably resulted from immunological tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号