首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Koukiekolo R  Sagan SM  Pezacki JP 《FEBS letters》2007,581(16):3051-3056
The RNA silencing pathway is an important component of the anti-viral immune response in eukaryotes, particularly in plants. In turn, many viruses have evolved mechanisms to evade or suppress this pathway. Tombusviruses such as the Carnation Italian ringspot virus (CIRV) express a 19kDa protein (p19) that is a suppressor of RNA silencing in infected plants. This protein acts as a dimer and binds specifically to short-interfering RNA (siRNA) through electrostatic interactions between charged residues in the binding cleft. Since pH and salt concentrations can vary widely from host to host, we have investigated the influence of these parameters on the siRNA binding activity of CIRV p19. Previously, we established a convenient fluorescence-based method for assaying CIRV p19:siRNA binding using Ni(2+)-NTA coated 96-well plates. Using this method, we observe that the CIRV p19 protein binds to siRNA with nanomolar affinity and that this binding is sensitive to pH and salt concentration. The pH-dissociation constant profile shows that CIRV p19:siRNA binding is dependent on three different apparent pK(a) values. The values extrapolated from the curve are 7.1, 8.0 and 10.6 that we interpret as the ionization of one or more histidine, cysteine and lysine residues, respectively. We find that the optimal suppression of RNA silencing by CIRV p19 occurs in the pH range from 6.2 to 7.6.  相似文献   

2.
Size selective recognition of siRNA by an RNA silencing suppressor   总被引:29,自引:0,他引:29  
Vargason JM  Szittya G  Burgyán J  Hall TM 《Cell》2003,115(7):799-811
RNA silencing in plants likely exists as a defense mechanism against molecular parasites such as RNA viruses, retrotransposons, and transgenes. As a result, many plant viruses have adapted mechanisms to evade and suppress gene silencing. Tombusviruses express a 19 kDa protein (p19), which has been shown to suppress RNA silencing in vivo and bind silencing-generated and synthetic small interfering RNAs (siRNAs) in vitro. Here we report the 2.5 A crystal structure of p19 from the Carnation Italian ringspot virus (CIRV) bound to a 21 nt siRNA and demonstrate in biochemical and in vivo assays that CIRV p19 protein acts as a molecular caliper to specifically select siRNAs based on the length of the duplex region of the RNA.  相似文献   

3.
Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short‐interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH‐dependent residues that affect CIRV p19–siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH‐dependent binding profile.  相似文献   

4.
Plant viruses are inducers and targets of RNA silencing. Viruses counteract with RNA silencing by expressing silencing-suppressor proteins. Many of the identified proteins bind siRNAs, which prevents assembly of silencing effector complexes, and also interfere with their 3' methylation, which protects them against degradation. Here, we investigated the 3' modification of silencing-related small RNAs in Nicotiana benthamiana plants infected with viruses expressing RNA silencing suppressors, the p19 protein of Carnation Italian ringspot virus (CIRV) and HC-Pro of Tobacco etch virus (TEV). We found that CIRV had only a slight effect on viral siRNA 3' modification, but TEV significantly inhibited the 3' modification of si/miRNAs. We also found that p19 and HC-Pro were able to bind both 3' modified and non-modified small RNAs in vivo. The findings suggest that the 3' modification of viral siRNAs occurs in the cytoplasm, though miRNA 3' modification likely takes place in the nucleus as well. Both silencing suppressors inhibited the 3' modification of si/miRNAs when they and small RNAs were transiently co-expressed, suggesting that the inhibition of si/miRNA 3' modification requires spatial and temporal co-expression. Finally, our data revealed that a HEN1-like methyltransferase might account for the small RNA modification at the their 3'-terminal nucleotide in N. benthamiana.  相似文献   

5.
Many plant viruses encode proteins that suppress the antiviral RNA silencing response mounted by the host. The suppressors p19 from tombusvirus and p21 from Beet yellows virus appear to block silencing by directly binding siRNA, a critical mediator in the process. Here, we report the crystal structure of p21, which reveals an octameric ring architecture with a large central cavity of approximately 90 A diameter. The all alpha-helical p21 monomer consists of N- and C-terminal domains that associate with their neighboring counterparts through symmetric head-to-head and tail-to-tail interactions. A putative RNA binding surface is identified in the conserved, positive-charged inner surface of the ring. In contrast to the specific p19-siRNA duplex interaction, p21 is a general nucleic acid binding protein, interacting with 21 nt or longer single- and double-stranded RNAs in vitro. This study reveals an RNA binding structure adopted by the p21 silencing suppressor.  相似文献   

6.
Pantaleo V  Burgyán J 《Journal of virology》2008,82(23):11851-11858
Cymbidium ringspot virus (CymRSV) satellite RNA (satRNA) is a parasitic subviral RNA replicon that replicates and accumulates at the cost of its helper virus. This 621-nucleotide (nt) satRNA species has no sequence similarity to the helper virus, except for a 51-nt-long region termed the helper-satellite homology (HSH) region, which is essential for satRNA replication. We show that the accumulation of satRNA strongly depends on temperature and on the presence of the helper virus p19 silencing suppressor protein, suggesting that RNA silencing plays a crucial role in satRNA accumulation. We also demonstrate that another member of the Tombusvirus genus, Carnation Italian ringspot virus (CIRV), supports satRNA accumulation at a higher level than CymRSV. Our results suggest that short interfering RNA (siRNA) derived from CymRSV targets satRNA more efficiently than siRNA from CIRV, possibly because of the higher sequence similarity between the HSH regions of the helper and CIRV satRNAs. RNA silencing sensor RNA carrying the putative satRNA target site in the HSH region was efficiently cleaved when transiently expressed in CymRSV-infected plants but not in CIRV-infected plants. Strikingly, replacing the CymRSV HSH box2 sequence with that of CIRV restores satRNA accumulation both at 24°C and in the absence of the p19 suppressor protein. These findings demonstrate the extraordinary adaptation of this virus to its host in terms of harnessing the antiviral silencing response of the plant to control the virus parasite satRNA.  相似文献   

7.
8.
Csorba T  Bovi A  Dalmay T  Burgyán J 《Journal of virology》2007,81(21):11768-11780
One of the functions of RNA silencing in plants is to defend against molecular parasites, such as viruses, retrotransposons, and transgenes. Plant viruses are inducers, as well as targets, of RNA silencing-based antiviral defense. Replication intermediates or folded viral RNAs activate RNA silencing, generating small interfering RNAs (siRNAs), which are the key players in the antiviral response. Viruses are able to counteract RNA silencing by expressing silencing-suppressor proteins. It has been shown that many of the identified silencing-suppressor proteins bind long double-stranded RNA or siRNAs and thereby prevent assembly of the silencing effector complexes. In this study, we show that the 122-kDa replicase subunit (p122) of crucifer-infecting Tobacco mosaic virus (cr-TMV) is a potent silencing-suppressor protein. We found that the p122 protein preferentially binds to double-stranded 21-nucleotide (nt) siRNA and microRNA (miRNA) intermediates with 2-nt 3' overhangs inhibiting the incorporation of siRNA and miRNA into silencing-related complexes (e.g., RNA-induced silencing complex [RISC]) both in vitro and in planta but cannot interfere with previously programmed RISCs. In addition, our results also suggest that the virus infection and/or sequestration of the siRNA and miRNA molecules by p122 enhances miRNA accumulation despite preventing its methylation. However, the p122 silencing suppressor does not prevent the methylation of certain miRNAs in hst-15 mutants, in which the nuclear export of miRNAs is compromised.  相似文献   

9.
RNA silencing is an evolutionarily conserved surveillance system that occurs in a broad range of eukaryotic organisms. In plants, RNA silencing acts as an antiviral system; thus, successful virus infection requires suppression of gene silencing. A number of viral suppressors have been identified so far; however, the molecular bases of silencing suppression are still poorly understood. Here we show that p19 of Cymbidium ringspot virus (CymRSV) inhibits RNA silencing via its small RNA-binding activity in vivo. Small RNAs bound by p19 in planta are bona fide double-stranded siRNAs and they are silencing competent in the in vitro RNA-silencing system. p19 also suppresses RNA silencing in the heterologous Drosophila in vitro system by preventing siRNA incorporation into RISC. During CymRSV infection, p19 markedly diminishes the amount of free siRNA in cells by forming p19-siRNA complexes, thus making siRNAs inaccessible for effector complexes of RNA-silencing machinery. Furthermore, the obtained results also suggest that the p19-mediated sequestration of siRNAs in virus-infected cells blocks the spread of the mobile, systemic signal of RNA silencing.  相似文献   

10.
In plants, RNA silencing (RNA interference) is an efficient antiviral system, and therefore successful virus infection requires suppression of silencing. Although many viral silencing suppressors have been identified, the molecular basis of silencing suppression is poorly understood. It is proposed that various suppressors inhibit RNA silencing by targeting different steps. However, as double-stranded RNAs (dsRNAs) play key roles in silencing, it was speculated that dsRNA binding might be a general silencing suppression strategy. Indeed, it was shown that the related aureusvirus P14 and tombusvirus P19 suppressors are dsRNA-binding proteins. Interestingly, P14 is a size-independent dsRNA-binding protein, while P19 binds only 21-nucleotide ds-sRNAs (small dsRNAs having 2-nucleotide 3' overhangs), the specificity determinant of the silencing system. Much evidence supports the idea that P19 inhibits silencing by sequestering silencing-generated viral ds-sRNAs. In this study we wanted to test the hypothesis that dsRNA binding is a general silencing suppression strategy. Here we show that many plant viral silencing suppressors bind dsRNAs. Beet yellows virus Peanut P21, clump virus P15, Barley stripe mosaic virus gammaB, and Tobacco etch virus HC-Pro, like P19, bind ds-sRNAs size-selectively, while Turnip crinkle virus CP is a size-independent dsRNA-binding protein, which binds long dsRNAs as well as ds-sRNAs. We propose that size-selective ds-sRNA-binding suppressors inhibit silencing by sequestering viral ds-sRNAs, whereas size-independent dsRNA-binding suppressors inactivate silencing by sequestering long dsRNA precursors of viral sRNAs and/or by binding ds-sRNAs. The findings that many unrelated silencing suppressors bind dsRNA suggest that dsRNA binding is a general silencing suppression strategy which has evolved independently many times.  相似文献   

11.
Eukaryotes have evolved complex cellular responses to double-stranded RNA. One response that is highly conserved across many species is the RNA silencing pathway. Tombusviruses have evolved a mechanism to evade the RNA silencing pathway that involves a small protein, p19, that acts as a suppressor of RNA silencing. This protein binds specifically to small-interfering RNAs (siRNAs) with nanomolar affinity in a sequence-independent manner and with size selectivity.  相似文献   

12.
Novel modes of protein-RNA recognition in the RNAi pathway   总被引:6,自引:0,他引:6  
Gene silencing mediated by RNA interference (RNAi) depends on short interfering RNAs (siRNAs) and micro RNAs (miRNAs). These RNAs have unique features, namely a defined size of 19-21 base pairs, and characteristic two-nucleotide single-stranded 3' overhangs and 5' monophosphate groups. These molecular features of siRNAs and miRNAs are produced by RNase III enzymes, which are a hallmark of gene silencing induced by double-stranded RNA. Recent structural studies of components of the RNAi pathway, including PAZ, Piwi and RNase III domains, as well as full-length Argonaute and viral p19 proteins, have revealed distinct and novel modes of sequence-independent recognition of the characteristic features of siRNAs and miRNAs in the RNAi pathway.  相似文献   

13.
Members of the p56 family of mammalian proteins are strongly induced in virus-infected cells and in cells treated with interferons or double-stranded RNA. Previously, we have reported that human p56 inhibits initiation of translation by binding to the "e" subunit of eukaryotic initiation factor 3 (eIF3) and subsequently interfering with the eIF3/eIF2.GTP.Met-tRNAi (ternary complex) interaction. Here we report that mouse p56 also interferes with eIF3 functions and inhibits translation. However, the murine protein binds to the "c" subunit, not the "e" subunit, of eIF3. Consequently, it has only a marginal effect on eIF3.ternary complex interaction. Instead, the major inhibitory effect of mouse p56 is manifested at a different step of translation initiation, namely the binding of eIF4F to the 40 S ribosomal subunit.eIF3.ternary complex. Thus, mouse and human p56 proteins block different functions of eIF3 by binding to its different subunits.  相似文献   

14.
RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 108 M 1 s− 1] and marked dissociation (koff = 0.062 ± 0.002 s− 1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy.  相似文献   

15.
RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation.  相似文献   

16.
Ebola virus (EBOV) causes a lethal hemorrhagic fever for which there is no approved effective treatment or prevention strategy. EBOV VP35 is a virulence factor that blocks innate antiviral host responses, including the induction of and response to alpha/beta interferon. VP35 is also an RNA silencing suppressor (RSS). By inhibiting microRNA-directed silencing, mammalian virus RSSs have the capacity to alter the cellular environment to benefit replication. A reporter gene containing specific microRNA target sequences was used to demonstrate that prior expression of wild-type VP35 was able to block establishment of microRNA silencing in mammalian cells. In addition, wild-type VP35 C-terminal domain (CTD) protein fusions were shown to bind small interfering RNA (siRNA). Analysis of mutant proteins demonstrated that reporter activity in RSS assays did not correlate with their ability to antagonize double-stranded RNA (dsRNA)-activated protein kinase R (PKR) or bind siRNA. The results suggest that enhanced reporter activity in the presence of VP35 is a composite of nonspecific translational enhancement and silencing suppression. Moreover, most of the specific RSS activity in mammalian cells is RNA binding independent, consistent with VP35's proposed role in sequestering one or more silencing complex proteins. To examine RSS activity in a system without interferon, VP35 was tested in well-characterized plant silencing suppression assays. VP35 was shown to possess potent plant RSS activity, and the activities of mutant proteins correlated strongly, but not exclusively, with RNA binding ability. The results suggest the importance of VP35-protein interactions in blocking silencing in a system (mammalian) that cannot amplify dsRNA.  相似文献   

17.
18.
Cheng J  Sagan SM  Jakubek ZJ  Pezacki JP 《Biochemistry》2008,47(31):8130-8138
Tombusviruses use a 19 kDa protein (p19) as a suppressor of the RNA silencing pathway during infection. The p19 protein binds to short-interfering RNA (siRNA) as a dimer and shows a high selectivity for short duplex RNAs over other RNA species. Since p19 can bind to synthetic and RNA silencing generated small RNAs with little sequence dependence and with size selectivity, this protein has utility as a tool for studying RNA silencing pathways in eukaryotes. However, the ability of p19 to serve as a tool for studying RNA silencing pathways may be complicated by the presence of other endogenous small RNAs such as micro-RNAs (miRNAs). To understand the importance of endogenous small RNA components with respect to p19's ability to bind to siRNAs, we examined the interactions of p19 with human miR-122, a 23-nucleotide duplex miRNA containing several mismatched base pairs that is highly abundant in the liver. The binding characteristics were compared with those of an siRNA optimized against the human kinase CSK. The binding studies were performed using fluorescence polarization experiments on duplex oligonucleotides containing Cy3 dye labels at the 5'-end of one of the strands of RNA as well as electrophoretic gel mobility shift assays. Both methods indicate that the synthetic siRNA with no mismatches in base pairing bound with >3-fold selectivity over that of miR-122. Our results suggest that p19 can distinguish between siRNAs and miRNA species, although the difference in binding constants is not so large that interactions with endogenous miRNAs can be totally ignored.  相似文献   

19.
Replication of plus-stranded RNA viruses takes place on membranous structures derived from various organelles in infected cells. Previous works with Tomato bushy stunt tombusvirus (TBSV) revealed the recruitment of either peroxisomal or endoplasmic reticulum (ER) membranes for replication. In case of Carnation Italian ringspot tombusvirus (CIRV), the mitochondrial membranes supported CIRV replication. In this study, we developed ER and mitochondrion-based in vitro tombusvirus replication assays. Using purified recombinant TBSV and CIRV replication proteins, we showed that TBSV could use the purified yeast ER and mitochondrial preparations for complete viral RNA replication, while CIRV preferentially replicated in the mitochondrial membranes. The viral RNA became partly RNase resistant after ∼40 to 60 min of incubation in the purified ER and mitochondrial preparations, suggesting that assembly of TBSV and CIRV replicases could take place in the purified ER and mitochondrial membranes in vitro. Using chimeric and heterologous combinations of replication proteins, we showed that multiple domains within the replication proteins are involved in determining the efficiency of tombusvirus replication in the two subcellular membranes. Altogether, we demonstrated that TBSV is less limited while CIRV is more restricted in utilizing various intracellular membranes for replication. Overall, the current work provides evidence that tombusvirus replication could occur in vitro in isolated subcellular membranes, suggesting that tombusviruses have the ability to utilize alternative organellar membranes during infection that could increase the chance of mixed virus replication and rapid evolution during coinfection.  相似文献   

20.
Plants and animals can recognize the invasion of pathogens through their perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Plant PRRs identified have been exclusively receptor-like kinases/proteins (RLK/Ps), and no RLK/P that can detect viruses has been identified to date. RNA silencing (RNA interference, RNAi) is regarded as an antiviral basal immunity because the majority of plant viruses has RNA as their genomes and encode RNA silencing suppressor (RSS) proteins to counterattack antiviral RNAi. Many RSSs were reported to bind to double-stranded RNAs (dsRNAs), which are regarded as viral PAMPs. We have recently identified a tobacco calmodulin (CaM)-like protein, rgs-CaM, as a PRR that binds to diverse viral RSSs through its affinity for the dsRNA-binding domains. Because rgs-CaM seems to target RSSs for autophagic degradation with self-sacrifice, the expression level of rgs-CaM is important for antiviral activity. Here, we found that the rgs-CaM expression was induced immediately (within 1 h) after wounding at a wound site on tobacco leaves. Since the invasion of plant viruses is usually associated with wounding, and several hours are required for viruses to replicate to a detectable level in invaded cells, the wound-induced expression of rgs-CaM seems to be linked to its antiviral function, which should be ready before the virus establishes infection. CaMs and CaM-like proteins usually transduce calcium signals through their binding to endogenous targets. Therefore, rgs-CaM is a unique CaM-like protein in terms of binding to exogenous targets and functioning as an antiviral PRR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号