首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific binding of (3H)ethylketocyclazocine to frog brain membrane preparation was enhanced in the presence of sodium ions administered as NaCl, both at 0 °C and at room temperature. The optimal NaCl concentration was 25 mM at 0 °C and 50 mM at 24 °C. MgCl2 inhibited the [3H]ethylketocyclazocine binding. Two binding sites (high and low affinity) were established with [3H]ethylketocyclazocine as ligand by equilibrium binding studies. Addition of NaCl increased the Bmax of the low-affinity site more than that of the high-affinity site at both temperatures. Affinities were higher at 0 °C than at 24 °C. TheK D values were not significantly influenced by sodium ions. The dissimilarities between the rat and frog brain opioid receptors in [3H]ethylketocyclazocine binding are attributed to the different lipid composition of the two membranes.Abbreviations used DAGO D-Ala2-(Me)Phe4-Gly-ol5-enkephalin - DALE d-Ala2-l-Leu5-enkephalin - DADLE d-Ala2-d-Leu5-enkephalin - EKC Ethylketocyclazocine - DHM Dihydromorphine - BIT 2-(p-ethoxybenzyl)1-diethylaminoethyl-5-isothiocyanobenzimidazole isothiocyanate - FIT Fentanyl isothiocyanate  相似文献   

2.
Opioid receptors of the frog (Rana esculenta) brain are characterized mainly by their relatively high ethylketocyclazocine (EKC) binding properties and by their low affinity to mu and delta ligands when D-Ala2-(Me)Phe4-Gly5-ol enkephalin (DAGO) and D-Ala2-Leu5-enkephalin (DALE) is used. In competition experiments it has been established that EKC and N-cyclopropylmethyl-norazidomorphine (CAM), which are non-selective kappa-ligands, have relatively high affinity to frog brain as well as the kappa 2 (which is DALE sensitive subpopulation of the kappa receptor) ligands etorphine and Metenkephalin-Arg6-Phe7 (1.). The kappa 2 subtype in frog brain resembles more to the mu subtype than to the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and DAGO.  相似文献   

3.
To further investigate the role of opioid peptides and specific opiate receptor subtypes in central cardiovascular regulation by hindbrain nuclei, mu (D-Ala2,MePhe4,Gly-ol5 enkephalin, DAGO), delta (D-Ala2,D-Leu5 enkephalin, DADL) or kappa (MRZ 2549) agonists were microinjected into hindbrain nuclei of spontaneously or artificially respired, pentobarbital-anesthetized rats. In the nucleus tractus solitarius (NTS), DAGO and DADL (0.3 nmol) elicited pressor responses and tachycardia. MRZ (3.0–16 nmol) depressed blood pressure in spontaneously breathing rats, but accelerated heart rate in artificially ventilated animals. Blood pressure and heart rate of spontaneously breathing animals were not altered following nucleus ambiguus (NA) injection of DAGO or DADL (0.3 nmol), but were elevated in artificially respired animals; MRZ (3.0–10 nmol) injected into the NA depressed blood pressure in both groups. These data suggest that in the absence of respiratory depression, NTS and NA mu receptors mediate pressor responses and tachycardia; kappa receptors in the NA mediate a decrease in blood pressure but cardioacceleration in the NTS.  相似文献   

4.
The interaction of various radioligands with spinal opioid receptors has been characterized under variable experimental conditions. Binding to , , and sites was measured in all (cervical, thoracic, lumbar) segments. The apparent affinity constant (K) of [3H]Ethylketocyclazocine (EKC) was similar in Tris, 2.09 (±1.06)×108 M–1, and phosphate buffer, 2.16 (±0.02)×108 M–1, when its interaction with and sites was blocked. Without blocking ligands, EKC binding was resolved in two components:K 1=1.01 (±0.21)×109 M–1 andK 2=0.95 (±0.61)×107 M–1. Likewise, the binding of [D-Ala2, MePhe4, Gly(ol)5]enkephalin (DAGO) or [D-Ala2, D-Leu5]-enkephalin (DADLE) alone was represented by a 2-site model. By adjusting the radioligand and receptor concentration or by the addition of blocking ligands, binding was represented by a 1-site model for DAGO,K=4.35 (±1.41)×108 M–1, and DADLE,K=2.44 (±0.08)×108 M–1.The abbreviations used are DADLE [D-Ala2, D-Leu5]enkephalin - DAGO [D-Ala2, MePhe4, Gly(ol)5]enkephalin - EKC ethylketocyclazocine - DYN dynorphin (1–17)  相似文献   

5.
Selective binding of [3H]bremazocine and [3H]-ethylketocyclazocine to kappa-opioid receptor sites in frog (Rana esculenta) brain membranes is irreversibly inactivated by the sulfhydryl group alkylating agent N-ethylmaleimide (NEM). Pretreatment of the membranes with kappa-selective compounds [ethylketocyclazocine (EKC), dynorphin (1-13), or U-50,488H] but not with [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAGO; mu specific ligand) or [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DADLE; delta specific ligand) strongly protects the binding of the radioligands against NEM inactivation. These results provide more evidence for the existence of kappa-opioid receptors in frog brain. The relatively high concentrations of NEM that are needed to decrease the specific binding of [3H]bremazocine together with the observation of an almost complete protection of its binding sites by NaCl suggest that bremazocine may act as an opioid antagonist in frog brain.  相似文献   

6.
Intracellular cyclic AMP levels were determined for dimeric and monomeric enkephalins interacting with PGE1-stimulated NG108-15 cells. The dimeric pentapeptide enkephalin (DPE2), [D-Ala2, Leu5 -NH-CH2]2, displaying very high affinity (K = 4.2 ± 0.3 nM?1) for the δ-opiate receptor, inhibited cyclic AMP production by 70%. Its IC50-value was between 0.1 and 0.2 nM, similar to that of the potent δ-agonist [D-Ala2, D-Leu5] enkephalin (DADLE) with K = 1.0 ± 0.1 nM?1. [D-Ala2, Leu5] enkephalin amide (DALEA), which is the monomer of DPE2, showed an IC50 = 4 nM. The dimeric tetrapeptide enkephalin (DTE12), [D-Ala2, des-Leu5-NH-(CH2)6]2 and its monomer [D-Ala2, desLeu5] enkephalin amide (DAPEA) showed IC50 = 2 and 20 nM, respectively. These results indicate that the DPE2 and DTE12 enkephalin dimers are potent δ-agonists.  相似文献   

7.
Complete separation of the [3H]ethylketocyclazocine [( 3H]EKC) specific binding (kappa subtype) from tritiated Tyr-D-Ala2-Me-Phe4-Gly-ol5 enkephalin (DAGO) and Tyr-D-Ala2-L-Leu5-enkephalin (DALA) binding (mu-and delta-subtypes, respectively) was achieved by Sepharose-6B chromatography and sucrose density gradient centrifugation of digitonin solubilized frog brain membranes. The apparent sedimentation coefficient (s20.w) for the kappa receptor-detergent complex was 13.1 S and the corresponding Stokes radius 64 A. The isolated fractions exhibited high affinity for EKC and bremazocine, whereas mu- and delta-specific ligands were unable to compete for the [3H]EKC binding sites, indicating that the kappa subtype represents a separate molecular to compete for the [3H]EKC binding sites, indicating that the kappa subtype represents a separate molecular entity from the mu and delta receptor sites.  相似文献   

8.
Binding of radio-labeled enkephalin monomers [D-Ala2,Met5]Enkephalin Amide (DAMEA) and [D-Ala2,D-Leu5]Enkephalin (DADLE) and a dimer of [D-Ala2,Leu] Enkephalin Amide (DPE2) to neuroblastoma-glioma (NG108-15) cells was examined in the presence and absence of GTP and/or cations. We found that: (1) binding occurs to a single class of homogeneous and non-interacting membane sites; (2) the affinity of the enkephalin dimer is reduced 50% in the presence of Mn2+ and 65% in the presence of both Mn2+ and GTP; (3) GTP alone either increases or does not change affinity of DPE2; (4) Na+ and GTP significantly decrease the affinities of monomers, but not that of the dimer; and (5) a higher concentration (0.1 mM) of GTP increases the binding of DPE2 but significantly decreases binding of monomers. Conclusion: Changes in binding of a dimeric enkephalin by Na+, Mn2+ and GTP are significantly and qualitatively different than those occurring for monomers.  相似文献   

9.
《Life sciences》1991,49(18):PL141-PL146
Delta opioid binding sites were assayed using [3H][D-ala2,D-leu5]enkephalin and rat brain membranes depleted of μ binding sites with the site-directed acylating agent, 2-(p-ethoxybenzyl)-1-diethylaminoethyl-5 -isothiocyanatobenzimidazole-HCI. [D-Pen2, D-Pen5]enkephalin (DPDPE), [D-Pen2,L-Pen5]enkephalin, [D-Ala2]deltorphin-I and [D-Ala2]deltorphin-II inhibition curves were characterized by slope factors (Hill coefficients) less than 1. The low slope factor of DPDPE persisted in the presence of 50 μM 5'-guanylyimidodiphosphate in the assay. Quantitative analysis of [D-ala2,D-leu5]enkephalin, DPDPE and [D-Ala2]deltorphin-I binding surfaces resolved two binding sites. Whereas [D-ala2,D-leu5]enkephalin had equal affinity for both sites, DPDPE and [D-Ala2]deltorphin-I had high affinity for the high capacity binding site, and low affinity for the low capacity binding site. These data support pharmacological studies demonstrating δ receptor subtyes which mediate antinociception.  相似文献   

10.
Previous work from our lab identified two subtypes of the opioid kappa receptor. Whereas the kappa1 receptor can be labeled by [3H]U69,593 (5, 7, 8-(–)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro (4,5)dec-8-yl]-phenyl-benzeneacetamide), the kappa2 receptor can be labeled by [125I]IOXY (6-125iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5-epoxymorphinan). Other data demonstrate that [125I]IOXY, like [3H]bremazocine, labels two populations of kappa2 receptors in guinea pig brain: kappa2a and kappa2b binding sites. In the present study, we tested the hypothesis that certain dihydrocodeinone and oxicodone derivatives, which have been shown to irreversibly block low affinity [3H]naloxone binding sites, would also bind irreversibly to opioid kappa receptor subtypes. We also tested the novel irreversible mu receptor antagonist, clocinnamox (14-(p-chlorocinnamoylamino)-7,8-dihydro-N-cyclopropylmethylnormorphinone mesylate). Wash-resistant inhibition (WRI) assays were conducted to detect apparent irreversible inhibition. The proportion of WRI attribuable to inhibition of receptor binding, termed receptor inhibition (RI), was calculated by the equation: RI=WRI (wash-resistant inhibition)-SI (supernatant inhibition or inhibition attributable to residual drug.) Dihydrocodeinone-hydrazone, dihydrocodeinone-oxime and naloxone-3-OMe-oxime failed to produce any wash-resistant inhibition of kappa receptor binding. In contrast, preincubating guinea pig membranes with 1 M clocinnamox produced a substantial degree of wash-resistant inhibition (greater than 90%) at kappa1 and kappa2 binding sites. However, as indicated by supernatant inhibition values of 70% to 90%, there was a large amount of residual clocinnamox which remained despite the use of an extensive washing procedure. Thus, it is apparent that clocinnamox has essentially no irreversible effect on kappa binding sites. Moreover, these results clearly demonstrate the requirement to determine supernatant inhibition when testing putative irreversible ligands. The apparent inactivity of dihydrocodeinone-hydrazone, dihydrocodeinone-oxime or naloxone-3-OMe-oxime as irreversible inhibitors of kappa receptors suggests that the low affinity [3H]naloxone binding site eliminated by these agents may not be a kappa binding site.  相似文献   

11.
《Peptides》1987,8(4):625-632
The agonist, and opioid antagonist, effects of intracerebroventricularly (ICV) given D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 (CTP), a cyclic analogue of somatostatin octapeptide, were evaluated using the micturition reflex of the anesthetized rat as the endpoint. Antagonist effects were evaluated against equieffective doses of selective mu [D-Ala2,NMPhe4,Gly-ol]enkephalin (DAGO) and delta [D-Pen2,D-Pen5] enkephalin (DPDPE) opioid agonists. At low ICV doses, CTP preferentially antagonized DPDPE rather than DAGO; increasing the dose of CTP further effectively antagonized both mu and delta agonists, while even higher doses showed an agonist effect alone which was not blocked by adrenergic, cholinergic or opioid antagonists. Selective opioid antagonist doses of CTP failed to block the inhibition of the micturition reflex produced by pentobarbital. Possible residual somatostatin like properties of CTP were tested by using somatostatin as a possible antagonist of equieffective doses of DPDPE and DAGO; somatostatin did not antagonize these agonists. Repeated exposure to CTP resulted in the development of acute tolerance to the agonist effect, and also prevented the inhibition of the reflex by high doses of somatostatin, with the converse experiment showing a similar pattern; thus, repeated somatostatin resulted in tolerance and subsequent cross-tolerance to the agonist effects of CTP. In animals tolerant to somatostatin, CTP nevertheless behaved as an opioid antagonist. The present results indicate that CTP possesses opioid antagonist properties in vivo which are pharmacological in nature but nevertheless retains residual somatostatin-like activity at higher doses.  相似文献   

12.
Bhargava, H. N., S. Kumar and J. T. Bian. Up-regulation of brain N-methyl- -aspartate receptors following multiple intracerebroventricular injections of [ -Pen2, -Pen5]enkephalin and [ -Ala2, Glu4]deltorphin II in mice. Peptides 18(10) 1609–1613, 1997.—The effects of chronic administration of [ -Pen2, -Pen5]enkephalin and [ -Ala2, Glu4]deltorphin II, the selective agonists of the δ1- and δ2-opioid receptors, on the binding of [3H]MK-801, a noncompetitive antagonist of the N-methyl- -aspartate receptor, were determined in several brain regions of the mouse. Male Swiss-Webster mice were injected intracerebroventricularly (i.c.v.) with [ -Pen2, -Pen5]enkephalin or [ -Ala2, Glu4]deltorphin II (20 μg/mouse) twice a day for 4 days. Vehicle injected mice served as controls. Previously we have shown that the above treatment results in the development of tolerance to their analgesic activity. The binding of [3H]MK-801 was determined in brain regions (cortex, midbrain, pons and medulla, hippocampus, striatum, hypothalamus and amygdala). At 5 nM concentration, the binding of [3H]MK-801 was increased in cerebral cortex, hippocampus, and pons and medulla of [ -Pen2, -Pen5]enkephalin treated mice. In [ -Ala2, Glu4]deltorphin II treated mice, the binding of [3H]MK-801 was increased in cerebral cortex and hippocampus. The changes in the binding were due to increases in the Bmax value of [3H]MK-801. It is concluded that tolerance to δ1- and δ2-opioid receptor agonists is associated with up-regulation of brain N-methyl- -aspartate receptors, however, some brain areas affected differ with the two treatments. The results are consistent with the recent observation from this laboratory that N-methyl- -aspartate receptors antagonists block tolerance to the analgesic action of δ1- and δ2-opioid receptor agonists.  相似文献   

13.
The ability of opioids to influence rectal temperature after injection into the periaqueductal grey region (PAG) of rat brain was investigated. Both morphine and beta-endorphin caused a dose-dependent increase in rectal temperature of up to 2 degrees C. By using selective ligands of the subclasses of opiate receptor such as [D-Ala2,D-Leu5]enkephalin for delta-receptors and ethylketocyclazocine, dynorphin(1-17) and dynorphin(1-8) for kappa-receptors, it was possible to show that neither the delta- nor the kappa-opiate receptor was involved in the hyperthermic response. However, [D-Ala2,MePhe4,Gly-ol5]enkephalin (DAGO), a mu-receptor ligand, did produce a dose-dependent hyperthermia. The ability of naltrexone, an opiate receptor antagonist, to reverse the hyperthermia induced by beta-endorphin and DAGO suggests that the opioid-stimulated increase in body temperature via the PAG is mediated through the mu-opiate receptor. Since the application of opioids to the PAG produces a hyperthermic response, it is possible that this brain site may have a role in the peptidergic control of body temperature.  相似文献   

14.
Solution conformations of β-methyl-para-nitrophenylalanine4 analogues of the potent δ-opioid peptide cyclo[D-Pen2, D-Pen5]enkephalin (DPDPE) were studied by combined use of nmr and conformational energy calculations. Nuclear Overhauser effect connectivities and 3JHNCαH coupling constants measured for the (2S, 3S)-, (2S, 3R)-, and (2R, 3R)-stereoisomers of[β-Me-p-NO2Phe4]DPDPE in DMSO were compared with low energy conformers obtained by energy minimization in the Empirical Conformational Energy Program for Peptides #2 force field. The conformers that satisfied all available nmr data were selected as probable solution conformations of these peptides. Side-chain rotamer populations, established using homonuclear (3JHαHβ) and heteronuclear (3JHαCγ) coupling constants and 13C chemical shifts, show that the β-methyl substituent eliminates one of the three staggered rotamers of the torsion angle x1 for each stereoisomer of the β-Me-p-NO2Phe4. Similar solution conformations were suggested for the L-Phe4-containing (2S, 3S)- and (2S, 3R)-stereoisomers. Despite some local differences, solution conformations of L- and D-Phe4-containing analogues have a common shape of the peptide backbone and allow similar orientations of the main δ-opioid pharmacophores. This type of structure differs from several models of the solution conformations of DPDPE, and from the model of biologically active conformations of DPDPE suggested earlier. The latter model is allowed for the potent (2S, 3S)- and (2S, 3R)-stereoisomers of [β-Me-p-NO2Phe4] DPDPE, but it is forbidden for the less active (2R, 3R)- and (2R, 3S)-stereoisomers. It was concluded that the biologically active stereoisomers of [β-Me-p-No2Phe4] DPDPE in the δ-receptor-bound state may assume a conformation different from their favorable conformations in DMSO. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Abstract

In membrane suspensions from guinea-pig brain, NaCl, LiCl, NH4Cl and KCl, inhibit the equilibrium binding (25°C) of the selective μ-agonist [3H]-[D-Ala2,MePhe4,Gly-ol5]enkephalin, the selective δ-agonist [3H]-[D-Pen2,D-Pen5]enkephalin and the selective δ-agonist [3H]-dynorphin A (1-9). Choline chloride inhibits the binding of the μ- and δ-agonists but not of the δ-agonist; the choline derivative, methacholine, inhibits also the binding of the δ-agonist. Binding of the δ-agonist is potentiated by CaCl2, MgCl2 and MnCl2; these salts inhibit binding of the δ-agonist. As far as binding of the μ-agonist is concerned, MgCl2 and MnCl2 may potentiate or inhibit whereas CaCl2 is only inhibitory. The binding of the μ-antagonist [3H]-naloxone is potentiated by NaCl; while the threshold of inhibition by LiCl is increased there is no potentiation. In membrane suspensions of the rabbit cerebellum about 80% of the opioid binding sites are of the μ-type; the binding of the μ-agonist [3H]-[D-Ala2, MePhe4, Gly-ol5]enkephalin is inhibited by NaCl, LiCl, KCl and choline chloride whereas that of the μ-antagonists [3H]-naloxone and [3H]-(-)-bremazocine is potentiated at low concentrations but inhibited at higher concentrations of NaCl. In membranes of the guinea-pig cerebellum about 80% of the opioid binding sites are of the δ-type; they are particularly effective for assays of K-receptors when the selective K-agonist [3H]-dynorphin A (1-9) is used as ligand.  相似文献   

16.
Tentoxin[cyclo-(MeAla1-Leu2-MePhe3-Gly4] is a metabolite isolated from a phytopathogenic fungusAlternaria alternata, which induces chlorosis of many plants. This potentialnatural herbicide binds specifically to the soluble part CF1of the chloroplastic coupling factor, which is a proton ATP-synthase. Theeffect of the toxin is concentration dependent: at low concentration it is apowerful inhibitor, while at higher concentration, it stimulates the enzyme.We synthesized tentoxin and we designed new analogues in order to vary thehydrophobicity on the side chain and to study the structure activityrelationships. Comparative activities suggest that it is possible toseparate inhibitory and activating effects using tentoxin analogues, showingsome evidence for the existence of two binding sites with different affinityconstant.  相似文献   

17.
Abstract

A radioiodinated photoreactive enkephal in derivative, 125I(D-Ala2 p-N3-Phe4-Met5) enkephalin, was used to photoaffinity label the opioid receptor from the membranes of four mammalian brains (without cerebellum) and spinal cords. These included the cat, rabbit, guinea pig and mouse. The photolabeled membranes were analyzed by sodium dodecyl sulfate gel electrophoresis. A 43,000-daltons protein was specifically photolabeled in all the membranes tested, as the specific labeling of this protein was inhibited in the presence of 14.5 uM of (D-Ala2 Met5) enkephalin. These data suggest that the 43,000-daltons protein is a binding protein of the opioid receptor in the different mammalian neural tissues.  相似文献   

18.
A series of D-amino acid-substituted analogs of the opiate peptide, methionine5-enkephalin, were synthesized by solid-phase methods and tested for their abilities to inhibit electrically-evoked contractions of mouse vasa deferentia and to compete with tritiated enkephalin for opiate receptors on particulate fractions isolated from homogenates of rat brain. [D-Ala2]-enkephalin and [D-Ala2]-enkephalin amide were found to be the most potent peptides in both assay systems, being about 1000% active in the vas deferens bioassay and 120% and 150% active, respectively, in the stereospecific binding test relative to methionine5-enkephalin itself. In comparison, [D-Met5]-, [D-Tyr1]-, [D-Leu2]-, [D-Phe2]-, [D-Ala3]-, and [D-Phe4]-enkephalin had not more than 10% activity. The stabilization of the β-bend conformation of methionine5-enkephalin by the substitution of D-alanine in position 2 of the peptide chain may contribute to the high activities of the [D-Ala2]-analogs.  相似文献   

19.
The effects of Mn2+ and calmodulin were studied on the basal and agonist-modulated adenylate cyclase activity of the guinea pig superior cervical ganglion. The divalent cation strongly stimulates the basal and agonist-modulated enzyme in a concentration-dependent manner. Moreover, in the presence of Mn2+ the inhibitory effects of high GTP concentrations and of D-Ala2-Met-enkephalinamide on adenylate cyclase are eliminated, while the stimulation exerted by prostaglandin E2 and the supra-additive activation of the enzyme by the combination of the two drugs are unaffected. In EGTA-washed, calmodulin-depleted membrane preparations, Mn2+ still activates the cyclase but the enkephalin inhibition and the superactivation of the enzyme induced by the combination of opiate and prostaglandin are lost, both in the absence and in the presence of the cation. Reconstituting the depleted membranes with exogenous Ca2+/calmodulin fully restored the enzyme responsivity to the combination and, partially, to the enkephalin. The findings suggest the existence in the guinea pig superior cervical ganglion of both the calmodulin-sensitive and differently regulated calmodulin-insensitive adenylate cyclase.  相似文献   

20.
《Life sciences》1994,55(2):PL37-PL43
Evidence in vivo has suggested the existence of subtypes of the δ opioid receptor (DOR), which have been termed δ1 and δ2. These proposed DOR subtypes are thought to be activated by [D-Pen2, D- Pen5]enkephalin (DPDPE, δ1) and [D-Ala2, Glu4]deltorphin (δ2). Recent work in which an antisense oligodeoxynucleotide (oligo) to a cloned DOR was administered by the intrathecal (i.th.) route has demonstrated a reduction in the antinociceptive actions of both i.th. DPDPE and [D-Ala2, Glu4]deltorphin, but not of [D-Ala2, NMPhe4, Gly-ol]enkephalin (DAMGO, μ agonist) in mice. The present investigation has extended these observations by administering the same DOR antisense oligo sequence by the intracerebroventricular (i.c.v.) route and evaluating the antinociceptive actions of i.c.v. agonist selective for δ, μ and κ receptors. I.th. treatment with DOR antisense oligo, but not mismatch oligo, significantly inhibited the antinociceptive actions of both i.th. DPDPE and [D-Ala2, Glu4deltorphin but not of i.th. DAMGO or U69, 593 (κ agonist), confirming previous data. In contrast, i.c.v. DOR antisense oligo, but not mismatch oligo, seletively inhibited the anitinociceptive response to i.c.v. [D-Ala2, Glu4]deltorphin without altering the antinociceptive actions of i.c.v. DPDPE, DAMGO or U69,593. The data suggest that the cloned DOR corresponds to that pharmacologically classified as δ2 and further, suggest that this δ receptor subtype may play a major role in eliciting spinal δ-mediated antinociception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号