首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal cell motility is characterized by a polarized distribution of actin filaments, with a network of short branched actin filaments at the leading edge, and polymers of actin filaments arranged into distinct classes of actin stress fibres behind the leading edge. Importantly, the distinct actin filaments are characteristically associated with discrete adhesion structures and both the adhesions and the actin filaments are co-ordinately regulated during cell migration. While it has long been known that these macromolecular structures are intimately linked in cells, precisely how they are co-ordinately regulated is presently unknown. Live imaging data now suggests that the focal adhesions may act as sites of actin polymerization resulting in the generation of tension-bearing actin bundles of actin filaments (stress fibres). Moreover, a picture is emerging to suggest that the tropomyosin family of proteins that can determine actin filament dynamics may also play a key role in determining the transition between adhesion states. Molecules such as the tropomyosins are therefore tantalizing candidates to orchestrate the coordination of actin and adhesion dynamics during mesenchymal cell migration.  相似文献   

2.
The actin cytoskeleton has the unique capability of integrating signaling and structural elements to regulate cell function. We have examined the ability of actin stress fiber disassembly to induce lens cell differentiation and the role of actin filaments in promoting lens cell survival. Three-dimensional mapping of basal actin filaments in the intact lens revealed that stress fibers were disassembled just as lens epithelial cells initiated their differentiation in vivo. Experimental disassembly of actin stress fibers in cultured lens epithelial cells with either the ROCK inhibitor Y-27632, which destabilizes stress fibers, or the actin depolymerizing drug cytochalasin D induced expression of lens cell differentiation markers. Significantly, short-term disassembly of actin stress fibers in lens epithelial cells by cytochalasin D was sufficient to signal lens cell differentiation. As differentiation proceeds, lens fiber cells assemble actin into cortical filaments. Both the actin stress fibers in lens epithelial cells and the cortical actin filaments in lens fiber cells were found to be necessary for cell survival. Sustained cytochalasin D treatment of undifferentiated lens epithelial cells suppressed Bcl-2 expression and the cells ultimately succumbed to apoptotic cell death. Inhibition of Rac-dependent cortical actin organization induced apoptosis of differentiating lens fiber cells. Our results demonstrate that disassembly of actin stress fibers induced lens cell differentiation, and that actin filaments provide an essential survival signal to both lens epithelial cells and differentiating lens fiber cells.  相似文献   

3.
Eukaryotic cells advance in phases of protrusion, pause and withdrawal. Protrusion occurs in lamellipodia, which are composed of diagonal networks of actin filaments, and withdrawal terminates with the formation of actin bundles parallel to the cell edge. Using correlated live-cell imaging and electron microscopy, we have shown that actin filaments in protruding lamellipodia subtend angles from 15-90 degrees to the front, and that transitions from protrusion to pause are associated with a proportional increase in filaments oriented more parallel to the cell edge. Microspike bundles of actin filaments also showed a wide angular distribution and correspondingly variable bilateral polymerization rates along the cell front. We propose that the angular shift of filaments in lamellipodia serves in adapting to slower protrusion rates while maintaining the filament densities required for structural support; further, we suggest that single filaments and microspike bundles contribute to the construction of the lamella behind and to the formation of the cell edge when protrusion ceases. Our findings provide an explanation for the variable turnover dynamics of actin filaments in lamellipodia observed by fluorescence speckle microscopy and are inconsistent with a current model of lamellipodia structure that features actin filaments branching at 70 degrees in a dendritic array.  相似文献   

4.
The lamina propria of the large intestine is rich in macrophages, and they might be one of the first lines of the host defense in enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection. Although macrophages were infected with them, they can survive the EHEC O157 infection. We examined the structural rearrangements of the actin cytoskeleton during the microbial infection process. Macrophage actin filaments were rearranged in the following sequence; 1) disappearance of the actin filament bundles in the cytoplasm, 2) accumulation of actin filaments under the cell surface, and 3) construction of actin networks underlying the endosome membrane. Before infection, actin filaments were distributed under the cell surface and in bundles located in the macrophage cytoplasm. Within 2 min, infection caused a rapid and marked loss of the actin filament bundles that had run parallel to the long axis of the cell. Concomitant with the loss, actin filaments became more markedly distributed under the cell surface. In the formation of the endosome, new networks of actin filaments were constructed below the phagosome membrane. The networks contained a large amount of actin as well as a fodrin-like immunoreactivity. The thickness of the networks reached about 400 nm under the phagosome membrane. The actin networks disappeared again after the bacterial digestion. The results of this study showed that actin filaments undergo three major rearrangements of the actin filaments during the infection in macrophages, and suggested that the third rearrangement is mediated by actin-binding proteins, such as a fodrin-like molecules. These morphological changes in macrophages were not clear after infection with other strains of Escherichia coli.  相似文献   

5.
The localisation of actin filaments was studied in rat urothelial cells during differentiation which accompanied regeneration after cell damage induced by cyclophosphamide (CP). By immunofluorescence it was established that actin filaments equally stained along the cell circumference in basal and intermediate cells, while basolateral cell membrane expression was found in terminally differentiated superficial cells. During regeneration, after CP treatment, simple urothelial hyperplasia developed with smaller cuboidal superficial cells, in which actin filaments were equally distributed under the apical and basolateral plasma membranes. As demonstrated by immunoelectron microscopy, the apical surface of these superficial cells was covered with microvilli containing bundles of actin filaments. Within 1 week, the urothelium reverted to its normal three-layer thickness. Superficial cells became larger and flattened and the unthickened apical plasma membrane matured into a thick asymmetric unit membrane. Concomitantly actin filaments disappeared from apical areas of superficial cells while remaining abundant at basolateral areas. Our results indicate that in the urothelium subcellular distribution of actin filaments can be considered as a marker of cell differentiation. Accepted: 16 September 1999  相似文献   

6.
Studies of the living embryo sacs of Torenia fournieri reveal that the actin cytoskeleton undergoes dramatic changes that correlate with nuclear migration within the central cell and the primary endosperm. Before pollination, actin filaments appear as short bundles randomly distributed in the cortex of the central cell. Two days after anthesis, they become organized into a distinct actin network. At this stage the secondary nucleus, which is located in the central region of the central cell, possesses an associated array of short actin filaments. Soon after pollination, the actin filaments become fragmented in the micropylar end and the secondary nucleus is located next to the egg apparatus. After fertilization, the primary endosperm nucleus moves away from the egg cell and actin filaments reorganize into a prominent network in the cytoplasm of the primary endosperm. Disruption of the actin cytoskeleton with latrunculin A and cytochalasin B indicates that actin is involved in the migration of the nucleus in the central cell. Our data also suggest that the dynamics of actin cytoskeleton may be responsible for the reorganization of the central cell and primary endosperm cytoplasm during fertilization.  相似文献   

7.
Studies of the living embryo sacs of Torenia fournieri reveal that the actin cytoskeleton undergoes dramatic changes that correlate with nuclear migration within the central cell and the primary endosperm. Before pollination, actin filaments appear as short bundles randomly distributed in the cortex of the central cell. Two days after anthesis, they become organized into a distinct actin network. At this stage the secondary nucleus, which is located in the central region of the central cell, possesses an associated array of short actin filaments. Soon after pollination, the actin filaments become fragmented in the micropylar end and the secondary nucleus is located next to the egg apparatus. After fertilization, the primary endosperm nucleus moves away from the egg cell and actin filaments reorganize into a prominent network in the cytoplasm of the primary endosperm. Disruption of the actin cytoskeleton with latrunculin A and cytochalasin B indicates that actin is involved in the migration of the nucleus  相似文献   

8.
Yamashita H  Sato Y  Kanegae T  Kagawa T  Wada M  Kadota A 《Planta》2011,233(2):357-368
Cytoskeleton dynamics during phototropin-dependent chloroplast photorelocation movement was analyzed in protonemal cells of actin- and microtubule-visualized lines of Physcomitrella patens expressing GFP- or tdTomato-talin and GFP-tubulin. Using newly developed epi- and trans-microbeam irradiation systems that permit fluorescence observation of the cell under blue microbeam irradiation inducing chloroplast relocation, it was revealed that meshwork of actin filaments formed at the chloroplast-accumulating area both in the avoidance and accumulation movements. The structure disappeared soon when blue microbeam was turned off, and it was not induced under red microbeam irradiation that did not evoke chloroplast relocation movement. In contrast, no apparent change in microtubule organization was detected during the movements. The actin meshwork was composed of short actin filaments distinct from the cytoplasmic long actin cables and was present between the chloroplasts and plasma membrane. The short actin filaments emerged from around the chloroplast periphery towards the center of chloroplast. Showing highly dynamic behavior, the chloroplast actin filaments (cp-actin filaments) were rapidly organized into meshwork on the chloroplast surface facing plasma membrane. The actin filament configuration on a chloroplast led to the formation of actin meshwork area in the cell as the chloroplasts arrived at and occupied the area. After establishment of the meshwork, cp-actin filaments were still highly dynamic, showing appearance, disappearance, severing and bundling of filaments. These results indicate that the cp-actin filaments have significant roles in the chloroplast movement and positioning in the cell.  相似文献   

9.
To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli.  相似文献   

10.
用荧光标记的鬼笔碱染色,对离体的黄蝉和姜花的生殖细胞内肌动蛋白微丝的分布进行了研究,结果证明两种植物的生殖细胞内部都存在一个微丝网络,黄蝉生殖细胞的比姜花的简单,微丝束较粗。但姜花生殖细胞的网络微丝束比黄蝉的更紧密地环绕着核。用免疫荧光技术在黄蝉生殖细胞的分裂前期和中期,可以观察到一些微丝束的存在,但在分裂后期和末期细胞内的肌动蛋白则变为颗粒状。  相似文献   

11.
12.
The actin cytoskeleton stress fiber is an actomyosin-based contractile structure seen as a bundle of actin filaments. Although tension development in a cell is believed to regulate stress fiber formation, little is known for the underlying biophysical mechanisms. To address this question, we examined the effects of tension on the behaviors of individual actin filaments during stress fiber (actin bundle) formation using cytosol-free semi-intact fibroblast cells that were pre-treated with the Rho kinase inhibitor Y-27632 to disassemble stress fibers into a meshwork of actin filaments. These filaments were sparsely labeled with quantum dots for live tracking of their motions. When ATP and Ca(2+) were applied to the semi-intact cells to generate actomyosin-based forces, actin meshwork in the protruded lamellae was dragged toward the cell body, while the periphery of the meshwork remained in the original region, indicating that centripetally directed tension developed in the meshwork. Then the individual actin filaments in the meshwork moved towards the cell body accompanied with sudden changes in the direction of their movements, finally forming actin bundles along the direction of tension. Dragging the meshwork by externally applied mechanical forces also exerted essentially the same effects. These results suggest the existence of tension-dependent remodeling of cross-links within the meshwork during the rearrangement of actin filaments, thus demonstrating that tension is a key player to regulate the dynamics of individual actin filaments that leads to actin bundle formation.  相似文献   

13.
The actin filament-associated protein and Src-binding partner, AFAP-110, is an adaptor protein that links signaling molecules to actin filaments. AFAP-110 binds actin filaments directly and multimerizes through a leucine zipper motif. Cellular signals downstream of Src(527F) can regulate multimerization. Here, we determined recombinant AFAP-110 (rAFAP-110)-bound actin filaments cooperatively, through a lateral association. We demonstrate rAFAP-110 has the capability to cross-link actin filaments, and this ability is dependent on the integrity of the carboxy terminal actin binding domain. Deletion of the leucine zipper motif or PKC phosphorylation affected AFAP-110's conformation, which correlated with changes in multimerization and increased the capability of rAFAP-110 to cross-link actin filaments. AFAP-110 is both a substrate and binding partner of PKC. On PKC activation, stress filament organization is lost, motility structures form, and AFAP-110 colocalizes strongly with motility structures. Expression of a deletion mutant of AFAP-110 that is unable to bind PKC blocked the effect of PMA on actin filaments. We hypothesize that upon PKC activation, AFAP-110 can be cooperatively recruited to newly forming actin filaments, like those that exist in cell motility structures, and that PKC phosphorylation effects a conformational change that may enable AFAP-110 to promote actin filament cross-linking at the cell membrane.  相似文献   

14.
Cytokinesis of animal cells involves the formation of the circumferential actin filament bundle (contractile ring) along the equatorial plane. To analyze the assembly mechanism of the contractile ring, we microinjected a small amount of rhodamine-labeled phalloidin (rh-pha) or rhodamine-labeled actin (rh-actin) into dividing normal rat kidney cells. rh-pha was microinjected during prometaphase or metaphase to label actin filaments that were present at that stage. As mitosis proceeded into anaphase, the labeled filaments became associated with the cortex of the cell. During cytokinesis, rh-pha was depleted from polar regions and became highly concentrated into the equatorial region. The distribution of total actin filaments, as revealed by staining the whole cell with fluorescein phalloidin, showed a much less pronounced difference between the polar and the equatorial regions. The sites of de novo assembly of actin filaments during the formation of the contractile ring were determined by microinjecting rh-actin shortly before cytokinesis, and then extracting and fixing the cell during mid-cytokinesis. Injected rhodamine actin was only slightly concentrated in the contractile ring, as compared to the distribution of total actin filaments. Our results indicate that preexisting actin filaments, probably through movement and reorganization, are used preferentially for the formation of the contractile ring. De novo assembly of filaments, on the other hand, appears to take place preferentially outside the cleavage furrow.  相似文献   

15.
The B cell antigen receptor (BCR) plays two central roles in B cell activation: to internalize antigens for processing and presentation, and to initiate signal transduction cascades that both promote B cells to enter the cell cycle and facilitate antigen processing by accelerating antigen transport. An early event in B cell activation is the association of BCR with the actin cytoskeleton, and an increase in cellular F-actin. Current evidence indicates that the organization of actin filaments changes in response to BCR-signaling, making actin filaments good candidates for regulation of BCR-antigen targeting. Here, we have analyzed the role of actin filaments in BCR-mediated antigen transport, using actin filament-disrupting reagents, cytochalasin D and latrunculin B, and an actin filament-stabilizing reagent, jasplakinolide. Perturbing actin filaments, either by disrupting or stabilizing them, blocked the movement of BCR from the plasma membrane to late endosomes/lysosomes. Cytochalasin D-treatment dramatically reduced the rate of internalization of BCR, and blocked the movement of the BCR from early endosomes to late endosomes/lysosomes, without affecting BCR-signaling. Thus, BCR-trafficking requires functional actin filaments for both internalization and movement to late endosomes/lysosomes, defining critical control points in BCR-antigen targeting.  相似文献   

16.
Summary Fluorescent phallotoxins and heavy meromyosin were used to reveal the organization of the actin cytoskeleton in honeybee photoreceptor cells, and the relationship of actin filaments to the submicrovillar, palisade-like cisternae of the endoplasmic reticulum (ER). Bundles of unipolar actin filaments (pointed end towards the cell center) protrude from the microvillar bases and extend through cytoplasmic bridges that traverse the submicrovillar ER. Within the cytoplasmic bridges, the filaments are regularly spaced and tightly apposed to the ER membrane. In addition, actin filaments are deployed close to the microvillar bases to form a loose web. Actin filaments are scarce in cell areas remote from the rhabdom; these areas contain microtubule-associated ER domains. The results suggest that the actin system of the submicrovillar cytoplasm shapes the submicrovillar ER cisternae, and that the distinct ER domains interact with different cytoskeletal elements.  相似文献   

17.
Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa.  相似文献   

18.
This study was designed to identify the molecular mechanisms of phosphatidylinositol 3-kinase (PI3K)-induced actin filament remodeling and cell migration. Expression of active forms of PI3K, v-P3k or Myr-P3k, was sufficient to induce actin filament remodeling to lead to an increase in cell migration, as well as the activation of Akt in chicken embryo fibroblast (CEF) cells. Either the inhibition of PI3K activity using a PI3K-specific inhibitor, LY-294002, or the disruption of Akt activity restored the integrity of actin filaments in CEF cells and inhibited PI3K-induced cell migration. We also found that expression of an activated form of Akt (Myr-Akt) was sufficient to remodel actin filaments to lead to an increase in cell migration, which was unable to be inhibited by the presence of LY-294002. Furthermore, we found that p70S6K1 kinase was a downstream molecule that can mediate the effects of both PI3K and Akt on actin filaments and cell migration. Overexpression of an active form of p70S6K1 was sufficient to induce actin filament remodeling and cell migration in CEF cells, which requires Rac activity. These results demonstrate that activation of PI3K activity alone is sufficient to remodel actin filaments to increase cell migration through the activation of Akt and p70S6K1 in CEF cells. phosphatidylinositol 3-kinase; Rac; actin filaments  相似文献   

19.
A double immunofluorescence staining technique to locate concanavalin A (Con A) surface receptors and cytoplasmic actin in the same cell was applied to monolayer cultures of rat foetal fibroblasts during cell detachment induced by trypsin and during cell attachment to glass substratum. Con A receptors were demonstrated by fluorescein-isothiocyanate-labelled Con A (FITC-Con A) and actin by specific anti-actin antibody (AAA) traced with rhodamine-labelled goat anti-human globulin (R-AHG). Untreated, control cells had an elongated shape, Con A receptors restricted to cell margins and prominent actin filaments. After 2 min treatment with 0.001% trypsin the cells became angular with Con A receptors in clusters and actin in a diffuse or aggreagate staining pattern. Progressive cell rounding followed and this was accompanied by the development of long, thin, arborized cell processes, studded with Con A receptors and containing fine actin filaments. Complete cell rounding preceded cell detachment. The sites of detached cells were marked by fine aggregates containing Con A receptors and actin. In cells attaching to a glass substratum, actin was present in a diffusely stained or aggregate pattern in round cells, in filaments restricted to cell margins in partially spread cells and in numerous filaments in fully spread cells. Con A receptors were present in clusters in round cells, in clusters or caps in partially spread cells and in cell margins in fully spread cells. Binding of FITC-Con A to partially spread cells resulted in dissolution of the few, newly formed, actin filaments. We believe our observations are consistent with the idea that actin filaments, formed during cell attachment, contribute towards the maintenance of cell adhesion by helping in the preservation of cell shape and by anchorage of Con A receptors at points of cell attachment to the substratum.  相似文献   

20.
微丝骨架存在于多种植物的保卫细胞中,周质微丝骨架的排列和结构是动态的。越来越多的证据表明保卫细胞中的微丝骨架可作为信号调节物,对气孔的启闭运动起着重要的调控作用。本文综述了保卫细胞微丝骨架的标记方法、结构,以及其在气孔运动中的功能和作用机制的最新研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号