首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many studies have examined consensus sequences required for protein‐glycosaminoglycan interactions. Through the synthesis of helical heparin binding peptides, this study probes the relationship between spatial arrangement of positive charge and heparin binding affinity. Peptides with a linear distribution of positive charge along one face of the α‐helix had the highest affinity for heparin. Moving the basic residues away from a single face resulted in drastic changes in heparin binding affinity of up to three orders of magnitude. These findings demonstrate that amino acid sequences, different from the known heparin binding consensus sequences, will form high affinity protein‐heparin binding interactions when the charged residues are aligned linearly. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 290–298, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
3.
A basic, amphiphilic alpha helix is a structural feature common to a variety of inhibitors of calmodulin and to the calmodulin-binding domains of myosin light chain kinases. To aid in recognizing this structural feature in sequences of peptides and proteins we have developed a computer algorithm which searches for sequences of appropriate length, hydrophobicity, helical hydrophobic moment, and charge to be considered as potential calmodulin-binding sequences. Such sequences occurred infrequently in proteins of known crystal structure. This algorithm was used to find the most likely site in the catalytic (gamma) subunit of phosphorylase b kinase for interaction with calmodulin (the delta subunit). A peptide corresponding to this site (residues 341-361 of the gamma subunit) was synthesized and found to bind calmodulin with approximately an 11 nM dissociation constant. A variant of this peptide in which an aspartic acid at position 7 in its sequence (347 of the gamma subunit) was replaced with an asparagine was found to bind calmodulin with approximately a 3 nM dissociation constant.  相似文献   

4.
球孢白僵菌是一种广谱性杀虫真菌,为了探索其转录因子BbMSN2识别启动子核心序列的能力,本研究外源表达并纯化了BbMSN2蛋白,合成了3个含有不同数量核心序列(AGGGG/ CCCCT)的核酸探针和6个核心序列点突变的核酸探针,将BbMSN2蛋白和核酸探针体外结合,通过凝胶迁移实验检测核酸探针及结合蛋白的迁移情况。研究发现,目的蛋白与含有核心序列的核酸探针结合时,核酸探针发生了凝胶迁移现象,其中核心序列数量对凝胶迁移的协同效益不显著。但目的蛋白与核心序列点突变核酸探针结合时,凝胶迁移现象明显减弱。上述结果表明,转录因子BbMSN2可以和含有核心序列核酸探针结合并发生相互作用,且对识别序列具有很强的特异性。本研究为深入探索BbMSN2转录调控机制奠定了试验基础。  相似文献   

5.
Monte Carlo computer simulation techniques may be used to predict structural properties of solvent networks in helical fragments of nucleic acids, provided that suitable potential functions are available to describe the interactions between nucleic acid atoms, water and counterions. Previous studies have shown that simple non-bonded and point charge parameters are adequate for mononuclear ions such as sodium and calcium. In this study a model interaction potential for the polynuclear ammonium ion is evaluated. The parameters used take account of the distribution of charge over the constituent atoms in the ion. Simulations are carried out on the ammonium salt of a small nucleic acid crystal hydrate and a comparison is made between the predicted and experimental results. It is shown that the simulated structure is in reasonable agreement with experiment. It is therefore feasible to use this potential in studies of ammonium-containing bimolecular systems.  相似文献   

6.
The theory of "codon-amino acid coevolution" was first proposed by Woese in 1967. It suggests that there is a stereochemical matching - that is, affinity - between amino acids and certain of the base triplet sequences that code for those amino acids. We have constructed a Common Periodic Table of Codons and Amino Acids, where the Nucleic Acid Table showed perfect axial symmetry for codons and the corresponding Amino Acid Table also displayed periodicity regarding the biochemical properties (charge and hydrophobicity) of the 20 amino acids and the position of the stop signals. The Table indicates that the middle (2nd) amino acid in the codon has a prominent role in determining some of the structural features of the amino acids. The possibility that physical contact between codons and amino acids might exist was tested on restriction enzymes. Many recognition site-like sequences were found in the coding sequences of these enzymes and as many as 73 examples of codon-amino acid co-location were observed in the 7 known 3D structures (December 2003) of endonuclease-nucleic acid complexes. These results indicate that the smallest possible units of specific nucleic acid-protein interaction are indeed the stereochemically compatible codons and amino acids.  相似文献   

7.
8.
Thymidylate synthase (TS), an essential enzyme for catalyzing the biosynthesis of thymidylate, is a critical therapeutic target in cancer therapy. Recent studies have shown that TS functions as an RNA-binding protein by interacting with two different sequences on its own mRNA, thus, repressing translational efficiency. In this study, peptides binding TS RNA with high affinity were isolated using mRNA display from a large peptide library (>1013 different sequences). The randomized library was subjected up to twelve rounds of in vitro selection and amplification. Comparing the amino acid composition of the selected peptides (12th round, R12) with those from the initial random library (round zero, R0), the basic and aromatic residues in the selected peptides were enriched significantly, suggesting that these peptide regions might be important in the peptide-TS mRNA interaction. Categorizing the amino acids at each random position based on their physicochemical properties and comparing the distributions with those of the initial random pool, an obvious basic charge characteristic was found at positions 1, 12, 17 and 18, suggesting that basic side chains participate in RNA binding. Secondary structure prediction showed that the selected peptides of R12 pool represented a helical propensity compared with R0 pool, and the regions were rich in basic residues. The electrophoretic gel mobility shift and in vitro translation assays showed that the peptides selected using mRNA display could bind TS RNA specifically and inhibit the translation of TS mRNA. Our results suggested that the identified peptides could be used as new TS inhibitors and developed to a novel class of anticancer agents.  相似文献   

9.
Thymidylate synthase (TS), an essential enzyme for catalyzing the biosynthesis of thymidylate, is a critical therapeutic target in cancer therapy. Recent studies have shown that TS functions as an RNA-binding protein by interacting with two different sequences on its own mRNA, thus, repressing translational efficiency. In this study, peptides binding TS RNA with high affinity were isolated using mRNA display from a large peptide library (>1013 different sequences). The randomized library was subjected up to twelve rounds of in vitro selection and amplification. Comparing the amino acid composition of the selected peptides (12th round, R12) with those from the initial random library (round zero, R0), the basic and aromatic residues in the selected peptides were enriched significantly, suggesting that these peptide regions might be important in the peptide-TS mRNA interaction. Categorizing the amino acids at each random position based on their physicochemical properties and comparing the distributions with those of the initial random pool, an obvious basic charge characteristic was found at positions 1, 12, 17 and 18, suggesting that basic side chains participate in RNA binding. Secondary structure prediction showed that the selected peptides of R12 pool represented a helical propensity compared with R0 pool, and the regions were rich in basic residues. The electrophoretic gel mobility shift and in vitro translation assays showed that the peptides selected using mRNA display could bind TS RNA specifically and inhibit the translation of TS mRNA. Our results suggested that the identified peptides could be used as new TS inhibitors and developed to a novel class of anticancer agents.  相似文献   

10.
A series of synthetic peptides have been studied as models for non-specific protein-DNA interactions. In an alpha-helical conformation, the charged amino acid residues of the N-terminal 24 residues of RecA protein are asymmetrically distributed; at neutral pH there is a +4 charge on one face of the helix and a -3 charge on the other face. Modeling suggests that the positive face of the helix can bind five DNA phosphate groups by electrostatic interactions. Circular dichroism (c.d.) spectra indicate that the analogous peptide, Rec24 (AIDENKQKALAAALGQIEKQFGKG-amide), is largely unstructured in water but becomes highly helical in the presence of DNA. Peptide titrations of fluorescent etheno-DNA confirm that the changes in the c.d. spectrum of the peptide are associated with binding, although a dependence of the c.d. signal on the degree of DNA saturation is observed, indicating that peptide can be bound in more than one conformation. At saturation the peptide binds to 5.0(+/- 0.5) DNA phosphate groups as predicted and the electrostatic nature of the binding is confirmed by a strong dependence on salt concentration. A "mutant" peptide where an acidic glutamate residue replaces an alanine on the basic face of the Rec24 helix exhibits weaker binding to single-stranded DNA, also consistent with the electrostatic nature of the proposed peptide-DNA interaction. Extending Rec24 by ten amino acid residues, where the additional residues do not participate in the helical motif, does not noticeably affect binding. Thus, we show experimentally that an asymmetric charge distribution on an alpha-helix can represent an important element for binding nucleic acids.  相似文献   

11.
In the preceding paper, a method to detect specific DNA sequences with mercurated nucleic acid probes and sulfhydryl-hapten ligands has been described. Due to the instability of the bond between mercury and a negatively charged sulfhydryl-hapten ligand (trinitrophenyl-glutathione), the in situ formed hybrid could not be detected. On basis of model system experiments it was suggested that this mercury-sulfhydryl bond could be stabilized by an extra polar interaction between ligand and nucleic acid. This was achieved by reversing the net charge of the ligand. Such ligands were synthesized by reacting aliphatic diamines to the carboxyl groups of Tnp-glutathione using a water soluble carbodiimide. Gel chromatographic analysis of mercurated polynucleotide-ligand complexes showed that the stability of the mercury-sulfhydryl bond is increased by the reversal of the net charge of the ligand. In situ hybridized mercurated mouse satellite DNA to mouse liver nuclei and mercurated kinetoplast cRNA hybridized to Crithidia fasciculata were immunocytochemically detected after the introduction of these positively charged ligands. The described method is applicable for RNA and DNA probes. It has a sensitivity comparable to other non-autoradiographic methods, is relatively simple to perform and can be carried out with ordinary laboratory chemicals.  相似文献   

12.
From thermodynamic considerations it is argued that the earliest templates for protein synthesis were very unlike present nucleic acids. It is suggested that they were composed of linked uracil derivatives bearing hypothetical side chains that could specifically recognize and interact with individual amino acid side chains (Fig. 1). An experiment supporting the possibility of such a specific interaction is described. The hypothesis accounts for the grouping of amino acids in the present codon table according to their relative hydrophobic character.  相似文献   

13.
Nuclear-encoded, chloroplast-destined proteins are synthesized with transit sequences that contain all information to get them inside the organelle. Different proteins are imported via a general protein import machinery, but their transit sequences do not share amino acid homology. It has been suggested that interactions between transit sequence and chloroplast envelope membrane lipids give rise to recognizable, structural motifs. In this study a detailed investigation of the structural, dynamical, and topological features of an isolated transit peptide associated with mixed micelles is described. The structure of the preferredoxin transit peptide in these micelles was studied by circular dichroism (CD) and multidimensional NMR techniques. CD experiments indicated that the peptide, which is unstructured in aqueous solution, obtained helical structure in the presence of the micelles. By NMR it is shown that the micelles introduced ill-defined helical structures in the transit peptide. Heteronuclear relaxation experiments showed that the whole peptide backbone is very flexible. The least dynamic segments are two N- and C-terminal helical regions flanking an unstructured proline-rich amino acid stretch. Finally, the insertion of the peptide backbone in the hydrophobic interior of the micelle was investigated by use of hydrophobic spin-labels. The combined data result in a model of the transit peptide structure, backbone dynamics, and insertion upon its interaction with mixed micelles.  相似文献   

14.
The structures formed by peptide models of the N-terminal domain of the nucleolar protein nucleolin were studied by CD and nmr. The sequences of the peptides are based on the putative nucleic acid binding sequence motif TPAKK: The peptides TP1 and TP2 have the sequence acetyl-G(ATPAKKAA)nG-amide, with n = 1 and 2, respectively. CD measurements indicate structural changes in both peptides when the lysine side chains are uncharged by increasing the pH or acetylation of the side-chain amines. When trifluoroethanol (TFE) is added, more extensive structural changes are observed, resembling helical structure based on nmr nuclear Overhauser effect (NOE) and Cα proton chemical shift changes, and CD spectra. The structure formed in 0.5M NaClO4 as observed by nmr is similar to that when the lysine side chains are acetylated, due presumably to interactions of perchlorate ion with side-chain charges on lysines. The helical structure observed in TPAKK motifs may be stabilized via N-capping interactions involving threonine. The structures observed in TFE suggest that the Thr-Pro sequence initiates short helical segments in TPAKK motifs, and these helical structures might interact with nucleic acids, presumably via interactions between lysines and threonines of nucleolin. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
16.
Understanding the molecular basis for the enhanced stability of proteins from thermophiles has been hindered by a lack of structural data for homologous pairs of proteins from thermophiles and mesophiles. To overcome this difficulty, complete genome sequences from 9 thermophilic and 21 mesophilic bacterial genomes were aligned with protein sequences with known structures from the protein data bank. Sequences with high homology to proteins with known structures were chosen for further analysis. High quality models of these chosen sequences were obtained using homology modeling. The current study is based on a data set of models of 900 mesophilic and 300 thermophilic protein single chains and also includes 178 templates of known structure. Structural comparisons of models of homologous proteins allowed several factors responsible for enhanced thermostability to be identified. Several statistically significant, specific amino acid substitutions that occur going from mesophiles to thermophiles are identified. Most of these are at solvent-exposed sites. Salt bridges occur significantly more often in thermophiles. The additional salt bridges in thermophiles are almost exclusively in solvent-exposed regions, and 35% are in the same element of secondary structure. Helices in thermophiles are stabilized by intrahelical salt bridges and by an increase in negative charge at the N-terminus. There is an approximate decrease of 1% in the overall loop content and a corresponding increase in helical content in thermophiles. Previously overlooked cation-pi interactions, estimated to be twice as strong as ion-pairs, are significantly enriched in thermophiles. At buried sites, statistically significant hydrophobic amino acid substitutions are typically consistent with decreased side chain conformational entropy.  相似文献   

17.
Extended proteins such as calmodulin and troponin C have two globular terminal domains linked by a central region that is exposed to water and often acts as a function-regulating element. The mechanisms that stabilize the tertiary structure of extended proteins appear to differ greatly from those of globular proteins. Identifying such differences in physical properties of amino acid sequences between extended proteins and globular proteins can provide clues useful for identification of extended proteins from complete genomes including orphan sequences. In the present study, we examined the structure and amino acid sequence of extended proteins. We found that extended proteins have a large net electric charge, high charge density, and an even balance of charge between the terminal domains, indicating that electrostatic interaction is a dominant factor in stabilization of extended proteins. Additionally, the central domain exposed to water contained many amphiphilic residues. Extended proteins can be identified from these physical properties of the tertiary structure, which can be deduced from the amino acid sequence. Analysis of physical properties of amino acid sequences can provide clues to the mechanism of protein folding. Also, structural changes in extended proteins may be caused by formation of molecular complexes. Long-range effects of electrostatic interactions also appear to play important roles in structural changes of extended proteins.  相似文献   

18.
The P0 protein is a major structural glycoprotein of molecular weight 28,000 in peripheral nerve myelin. The complete amino acid sequence of bovine P0 protein was determined. The polypeptide chain consists of 219 amino acid residues and includes a highly hydrophobic domain (residues 125-150) in the middle, which probably represents a transmembrane segment. The amino terminal domain (residues 1-124) is relatively hydrophobic, but contains a negatively charged carbohydrate chain at Asn93. This domain is most likely located on the extracellular side of the membrane and may contribute to formation of the myelin intraperiod line by hydrophobic and electrostatic interactions. On the other hand, the basic carboxyl-terminal domain (residues 151-219) may protrude from the cytoplasmic side of the membrane and is probably involved together with basic proteins in the formation of the major myelin dense line through electrostatic interaction with acidic lipids in the membrane. The few interspecies amino acid variations between the bovine P0 and the rat P0 sequences, deduced from the cDNA (Lemke, G., and Axel, R. (1985) Cell 40, 501-508), indicate that the P0 protein is conserved across species.  相似文献   

19.
A knowledge of structural and energetic aspects of water- and ion-nucleic acid interactions is essential for the understanding of the role of solvent and counterions in stabilising the various helical forms of nucleic acids. In this study, Monte Carlo computer simulation techniques have been used to predict structural properties of solvent networks in small nucleic acid crystal hydrates containing the ions sodium, ammonium and calcium. Appropriate parameters to describe the interaction potentials of the ions are added to those previously developed for water and nucleic acid atoms. A comparison is made between the predicted and experimental results and it is concluded that the potential functions used lead to simulated solvent structure in reasonable agreement with experimental data, at least in the cases of sodium and calcium. It is now feasible to use these functions in studies of hydration of larger helical fragments of nucleic acids of more direct biological interest.  相似文献   

20.
Summary In the preceding paper, a method to detect specific DNA sequences with mercurated nucleic acid probes and sulfhydryl-hapten ligands has been described. Due to the instability of the bond between mercury and a negatively charged sulfhydryl-hapten ligand (trinitrophenyl-glutathione), the in situ formed hybrid could not be detected. On basis of model system experiments it was suggested that this mercury-sulfhydryl bond could be stabilized by an extra polar interaction between ligand and nucleic acid. This was achreved by reversing the net charge of the ligand. Such ligands were synthesized by reacting aliphatic diamines to the carboxyl groups of Tnp-glutathione using a water soluble carbodiimide. Gel chromatographic analysis of mercurated polynucleotide-ligand complexes showed that the stability of the mercury-sulfhydryl bond is increased by the reversal of the net charge of the ligand.In situ hybridized mercurated mouse satellite DNA to mouse liver nuclei and mercurated kinetoplast cRNA hybridized to Crithidia fasciculata were immunocytochemically detected after the introduction of these positively charged ligands.The described method is applicable for RNA and DNA probes. It has a sensitivity comparable to other non-autoradiographic methods, is relatively simple to perform and can be carried out with ordinary laboratory chemicals.This investigation was supported by the Netherlands Foundation for Medical Research Fungo (grant nr 13-54-21)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号