首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reintroduction of terrestrial vertebrates with the goal of ecosystem restoration typically establishes small and isolated populations that may experience reduced genetic variability due to founder effects and genetic drift. Understanding the genetic structure of these populations and maintaining adequate genetic diversity is important for long‐term restoration success. We quantified genetic variability at six microsatellite loci for a reintroduced population of Cervus elaphus (elk) restored to the tallgrass prairie ecosystem of northeastern Kansas. Allelic richness, observed and expected heterozygosity were intermediate to levels reported in other North American elk populations. Current levels of genetic variability in restored North American elk populations were not well explained by founding population size, number of founding populations, or number of years since the last translocation. Simulation results suggest that the retention of genetic variability in isolated populations is strongly influenced by mating system while also being impacted by temporal variability in population size and population growth rate. Our results have implications for understanding how translocation strategies and post‐reintroduction management may influence genetic variability in restored populations.  相似文献   

2.
Hainan Eld’s deer (Cervus eldi hainanus) experienced a dramatic decline in the late 1960s through early 1970s and by 1976 only 26 deer remained in Datian of Hainan Island, China. Since then, conservation efforts have successfully rescued this deer from extinction. We employed 10 microsatellite DNA loci to index genetic variation in the one source (Datian) and two introduced populations (Bangxi and Ganshiling) and suggest implications for the conservation of the species. A total of 40 alleles at 10 loci were examined from 198 deer blood samples. The source population harbored all 40 alleles, while the Bangxi and Ganshiling translocated populations contained 24 and 26 alleles, respectively. The genetic variability was low (H e ≈ 0.33) for each of the three populations. No significant difference in genetic variability between the three populations was detected (P > 0.05); yet significant differentiation was found among the three populations. Our results suggest that founder effects and genetic drift have affected the two translocated populations. For conservation we recommend the three populations be managed as a meta-population. When establishing future reintroductions, the founder population should have a size larger than the original 26 founders in Datian population or be composed of a cohort of over 20 same-age individuals with 1:1 sex ratio. Genetic monitoring for both the source and translocated populations should be continuously conducted in order to assess the effectiveness of deer conservation in the future.  相似文献   

3.
Species invasions can have wide‐ranging biological and socio‐economic effects and are generally unwanted by legislation. Identification of the source population as well as the ecology and genetics of both the invader population and the receiving community is of crucial importance. The rapid invasion of a small coregonid fish vendace (Coregonus albula) in a major northern European subarctic watercourse has resulted in a labile ecological situation in the receiving community. The ecological impact of the invasion has been thoroughly documented, but the genetics of the invasion remains to be explored. We analyzed the genetic diversity and divergence patterns among the two possible source populations from southern Finnish Lapland and three colonists populations within the Inari‐Pasvik watercourse using ten microsatellite loci in order to (i) identify the most likely source of the invasion, (ii) reveal the dispersal pattern and genetic structure of the secondary expansion, and (iii) to investigate whether the initial introduction and the secondary expansion were associated with founder effects. We revealed that repeated translocation of vendace from Lake Sinettäjärvi into a tributary lake of L. Inari in 1964–1966 is the most plausible source for the invasion. Both the initial introduction and the secondary expansion were found not to be associated with significant founder effects. The secondary expansion followed a stepping stone pattern and the source and colonist populations of this expansion have undergone rapid genetic divergence within a period of 15–35 years (ca. 8–17 generations). The rapid divergence may be contributed to lack of gene flow among the source and colonist populations due to the extensive hydroelectric damming in the watercourse. Multiple introductions and substantial genetic variation in combination with the boom‐and‐bust population development of the species thus likely counteracted the founder effects as well as fueled the rapid establishment and expansion of this species within the Inari‐Pasvik watercourse.  相似文献   

4.
Mosquitofish (Gambusia affinis) were collected from 17 reservoirs on three islands in Hawaii, USA. Genetic and life history traits for adult females from these populations were used to evaluate hypotheses concerning short-term evolutionary divergence of populations recently established from a common ancestral source. The effects of founder events and drift on genetic variability and population differentiation were also examined. Significant differences in life history characteristics, allele frequencies, and multi-locus heterozygosities (H) were found among fish populations collected from different reservoirs and between reservoirs classified as stable or fluctuating on the basis of temporal fluctuation in water level. Females from stable reservoirs exhibited greater standard length (35.1 vs 32.8 mm), lower fecundity (11.9 vs 15.2 embryos), lower reproductive allocation (18.2% vs 22.8%), but larger mean embryo size (1.95 vs 1.67 mg) than females from fluctuating reservoirs. Consistency in means among replicates of each reservoir class and concordance in direction and magnitude of differences reported here and results of sampling conducted from these same locations 10 years previously (Stearns, 1983a) suggest that ecological factors intrinsic to these two environments are important in determing population life history traits. Females from stable reservoirs exhibited lower heterozygosity than females from fluctuating reservoirs (0.134 vs 0.158, respectively). Levels and direction od differences in heterozygosity, the high proportion of polymorphic loci and lack of fixation of alternative alleles argue against a purely stochastic explanation for genetic and life history variation among reservoir populations. Levels of genetic variability and interpopulation differentiation were similar to those observed in mainland populations of this species. A high proportion of the genetic diversity was apportioned between populations and within populations due to differences between juveniles and adults. Significant genotypic differences between adult and juvenile age classes suggest that the genetic divergence of local populations may occur over short periods of time.  相似文献   

5.
The populations of Gelidium canariensis (Grunow) Seoane-Camba from the Canary Islands were analyzed for genetic variability by isozyme electrophoresis in 1989 and 1990. Each population was divided into sporophytic and gametophytic subpopulations. Twenty-three to 27 putative alleles corresponding to 22 gene loci were analyzed. Sev-enteen loci were monomorphic in all six subpopulations, and five were polymorphic in at least one subpopulation. Significant deviations from Hardy-Weinberg equilibrium were found. The amount of genetic variability (percentage of polymorphic loci, mean number of alleles per locus, and average gene diversity) of haploid subpopulations was lower than that of diploid subpopulations. No correlation between genetic distance and geographical distance was found. Low genetic differentiation between sporophytic and gametophytic subpopulations of the same locality was obsewed in two populations. The low genetic diversity and genetic differentiation suggest that the genetic structure of the populations of G. canariensis from the Canary Islands is due to a combination of founder effects and the predominance of asexual reproduction. Initial differences in gene frequencies may have persisted because of insufficient time to reach a higher level of differentiation.  相似文献   

6.
The molecular basis of more than 25 genetic diseases has been described in Ashkenazi Jewish populations. Most of these diseases are characterized by one or two major founder mutations that are present in the Ashkenazi population at elevated frequencies. One explanation for this preponderance of recessive diseases is accentuated genetic drift resulting from a series of dispersals to and within Europe, endogamy, and/or recent rapid population growth. However, a clear picture of the manner in which neutral genetic variation has been affected by such a demographic history has not yet emerged. We have examined a set of 32 binary markers (single nucleotide polymorphisms; SNPs) and 10 microsatellites on the non-recombining portion of the Y chromosome (NRY) to investigate the ways in which patterns of variation differ between Ashkenazi Jewish and their non-Jewish host populations in Europe. This set of SNPs defines a total of 20 NRY haplogroups in these populations, at least four of which are likely to have been part of the ancestral Ashkenazi gene pool in the Near East, and at least three of which may have introgressed to some degree into Ashkenazi populations after their dispersal to Europe. It is striking that whereas Ashkenazi populations are genetically more diverse at both the SNP and STR level compared with their European non-Jewish counterparts, they have greatly reduced within-haplogroup STR variability, especially in those founder haplogroups that migrated from the Near East. This contrasting pattern of diversity in Ashkenazi populations is evidence for a reduction in male effective population size, possibly resulting from a series of founder events and high rates of endogamy within Europe. This reduced effective population size may explain the high incidence of founder disease mutations despite overall high levels of NRY diversity.Electronic Supplementary Material Supplementary material is available in the online version of this article at D.M. Behar and D. Garrigan contributed equally to this workElectronic database information: URLs for the data in this article are as follows:ARLEQUIN,  相似文献   

7.
Translocation is a widely used tool in wildlife management, but populations established as a result of translocations may be subject to a range of genetic problems, including loss of genetic diversity and founder effects. The genetic impact of single translocation events can be difficult to assess because of complex management histories in translocated or source populations. Here we use molecular markers to assess the genetic impact of three well-documented translocation events, each occurring between 42 and 53 years ago and each originating from a native, extant source population that we also included in our study. Comparing translocated populations to their sources, we found genetic evidence of a recent bottleneck in all three translocated populations, including one which is now a very large, productive population. Based on our results, we recommend caution in (1) using short term census data to assess the long term success of a translocation and (2) conducting serial translocations (i.e., using translocated populations as the source for other translocations), which could exacerbate a genetic bottleneck. We also used the data on translocated populations to investigate the relative utility of three bottleneck detection methods. With this dataset, only assessment of the modal allele frequency distribution, described by Luikart etal. [Journal of Heredity, 89, 238–247 (1998)], provided evidence of a bottleneck in the absence of source population data.  相似文献   

8.
Most founding events entail a reduction in population size, which in turn leads to genetic drift effects that can deplete alleles. Besides reducing neutral genetic variability, founder effects can in principle shift additive genetic variance for phenotypes that underlie fitness. This could then lead to different rates of adaptation among populations that have undergone a population size bottleneck as well as an environmental change, even when these populations have a common evolutionary history. Thus, theory suggests that there should be an association between observable genetic variability for both neutral markers and phenotypes related to fitness. Here, we test this scenario by monitoring the early evolutionary dynamics of six laboratory foundations derived from founders taken from the same source natural population of Drosophila subobscura. Each foundation was in turn three‐fold replicated. During their first few generations, these six foundations showed an abrupt increase in their genetic differentiation, within and between foundations. The eighteen populations that were monitored also differed in their patterns of phenotypic adaptation according to their immediately ancestral founding sample. Differences in early genetic variability and in effective population size were found to predict differences in the rate of adaptation during the first 21 generations of laboratory evolution. We show that evolution in a novel environment is strongly contingent not only on the initial composition of a newly founded population but also on the stochastic changes that occur during the first generations of colonization. Such effects make laboratory populations poor guides to the evolutionary genetic properties of their ancestral wild populations.  相似文献   

9.
Moose, Alces alces, occur naturally throughout most of Canada but successful introductions of known numbers of animals have been made to the islands of Newfoundland and Cape Breton. Five microsatellite loci were used to investigate the population genetic structure and any change in genetic variability due to founder events of moose in Canada. Comparisons of allele frequencies for moose from 11 regions of the country suggested that there are at least seven genetically distinct populations (P < 0.05) in North America, namely Alberta, eastern Ontario, New Brunswick, Cape Breton, Labrador, western Newfoundland, and the Avalon Peninsula of Newfoundland. The average population heterozygosity was approximately 33% (range from 22 to 41%). UPGMA analysis of Nei's genetic distances produced phenograms similar to what would be expected when geographical location and population history are considered. The loss of heterozygosity due to a single founder event (n = 3; two introductions and a natural colonization) ranged from 14 to 30%, and the cumulative loss of heterozygosity due to two successive founder events (an introduction followed by a natural colonization) was 46%. In these examples loss of genetic variability has not been associated with any known phenotypic deviances, suggesting that populations may be established from a small number of founders. However, the viability of these founded populations over evolutionary timescales cannot be determined and is highly dependent upon chance.  相似文献   

10.
The potential impact of population bottlenecks and founder events on genetic diversity and indirect measures of fitness (such as fluctuating asymmetry; FA) has important conservation implications. Here we take advantage of historical events that generated a remnant roe deer (Capreolus capreolus) population in the north of the British Isles that retained diversity, while populations in the south were apparently extirpated during the early mediaeval era. The southern population was later re-established from small founder populations of introduced European roe deer starting in the 19th century. We assess the impact of these events, using the northern remnant population as a reference, based on measures of FA at 16 bilateral cranial traits. Comparing the northern and southern populations we find evidence of differential impact on both the level of FA and the relationship between FA and levels of genetic diversity.  相似文献   

11.
Pedigree analysis has clear benefits for the genetic management of threatened populations through the evaluation of inbreeding, population structure and genetic diversity. The use of pedigrees is usually restricted to captive populations and few examples exist of their exclusive use in managing free-ranging populations. One such example is the management of the takahe (Porphyrio hochstetteri), a highly endangered, flightless New Zealand rail at risk from introduced mammalian predators and habitat loss. During the 1980’s and 90’s, as part of the takahe recovery programme, birds were translocated from the sole remnant population in Fiordland to four offshore islands from which introduced predators had been eradicated. The subsequent “island” population, now numbering 83 and thought to be at carrying capacity, has been closely monitored since founding. Detailed breeding records allow us to analyse the island pedigree, which is up to 7 generations deep. Gene-drop analysis indicated that 7.5% of genetic diversity has been lost over the relatively short timeframe since founding (2.1 generations on average; total genetic founders = 31) due to both a failure to equalise founder representation early on and subsequent disproportionate breeding success (founder equivalents = 12.5; founder genome equivalents = 6.6). A high prevalence of close inbreeding will have also impacted on genetic diversity. Predictions from pedigree modelling suggest that 90% genetic diversity will be maintained for only 12 years, but by introducing a low level of immigration from the Fiordland population and permitting the population to grow, 90% GD could be maintained over the next 100 years. More generally, the results demonstrate the value of maintaining pedigrees for wild populations, especially in the years immediately after a translocation event.  相似文献   

12.
Bottlenecks, founder events, and genetic drift often result in decreased genetic diversity and increased population differentiation. These events may follow abundance declines due to natural or anthropogenic perturbations, where translocations may be an effective conservation strategy to increase population size. American black bears (Ursus americanus) were nearly extirpated from the Central Interior Highlands, USA by 1920. In an effort to restore bears, 254 individuals were translocated from Minnesota, USA, and Manitoba, Canada, into the Ouachita and Ozark Mountains from 1958 to 1968. Using 15 microsatellites and mitochondrial haplotypes, we observed contemporary genetic diversity and differentiation between the source and supplemented populations. We inferred four genetic clusters: Source, Ouachitas, Ozarks, and a cluster in Missouri where no individuals were translocated. Coalescent models using approximate Bayesian computation identified an admixture model as having the highest posterior probability (0.942) over models where the translocation was unsuccessful or acted as a founder event. Nuclear genetic diversity was highest in the source (AR = 9.11) and significantly lower in the translocated populations (AR = 7.07–7.34; P = 0.004). The Missouri cluster had the lowest genetic diversity (AR = 5.48) and served as a natural experiment showing the utility of translocations to increase genetic diversity following demographic bottlenecks. Differentiation was greater between the two admixed populations than either compared to the source, suggesting that genetic drift acted strongly over the eight generations since the translocation. The Ouachitas and Missouri were previously hypothesized to be remnant lineages. We observed a pretranslocation remnant signature in Missouri but not in the Ouachitas.  相似文献   

13.
Newly established populations are susceptible to founder events that reduce genetic variation. This may be counterbalanced by gene flow after populations become established or founders coming from genetically different populations. However, initial gains in genetic diversity may be short-lived if there is limited mixing between lineages and subsequent inbreeding, or if one lineage sweeps to fixation through selection or genetic drift. Here, we report on the genetic changes taking place within two newly established populations of intertidal snail over a 15-year period (~ 10 generations). Each translocation was set up using multiple, genetically distinct source populations. Our data show that higher levels of variation in the translocated populations compared to the source populations were maintained over time for both nuclear (microsatellite) and mitochondrial genes. Small changes in allele and haplotype frequencies were observed in the source populations and in one of the translocated populations, but marked changes were evident in the other, where there was a dramatic shift towards the genetic make-up of one of the source populations. These genetic changes occurred despite relatively large numbers of founders (200-374 adults) and no evidence of the population experiencing a severe reduction in effective population size. Our study shows that the genetic composition of newly established populations can vary greatly over time and that genetic outcomes can be highly variable, and significantly different from initial expectations, even when they are established using high numbers of individuals and involve source populations from the same geographic regions.  相似文献   

14.
Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron‐Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron‐Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.  相似文献   

15.
Kramer A  Sarnelle O 《Oecologia》2008,157(4):561-569
The Allee effect can result in a negative population growth rate at low population density. Consequently, populations below a minimum (critical) density are unlikely to persist. A lower limit on population size should constrain the loss of genetic variability due to genetic drift during population bottlenecks or founder events. We explored this phenomenon by modeling changes in genetic variability and differentiation during simulated bottlenecks of the alpine copepod, Hesperodiaptomus shoshone. Lake surveys, whole-lake re-introduction experiments and model calculations all indicate that H. shoshone should be unlikely to establish or persist at densities less than 0.5–5 individuals m−3. We estimated the corresponding range in minimum effective population size using the distribution of habitat (lake) sizes in nature and used these values to model the expected heterozygosity, allelic richness and genetic differentiation resulting from population bottlenecks. We found that during realistic bottlenecks or founder events, >90% of H. shoshone populations in the Sierra Nevada may be resistant to significant changes in heterozygosity or genetic distance, and 70–75% of populations may lose <10% of allelic richness. We suggest that ecological constraints on minimum population size be considered when using genetic markers to estimate historical population dynamics.  相似文献   

16.
We assess population genetic structure and variability in the endangered Azorean endemic Viburnum treleasei Gand., an evergreen shrub or small tree, occurring in eight out of nine islands of the archipelago. We combine RAPD and ISSR markers in eight populations and four islands covering the three subgroups of islands that compose the archipelago, and one population of V. tinus from the Portuguese mainland. Most of the genetic variability was found within populations, which is in accordance with the bi-parental reproductive strategy favored by the taxon. Gene flow estimations for the combined RAPD and ISSR markers suggest that the main cause for population variability between the studied populations is genetic drift. In accordance with the genetic structure indicators obtained, conservation measures should consider that translocation of individuals between islands must be avoided. In specific cases, the analysed populations may require the implementation of augmentation strategies due to their depleted state. With this study, a genetic background is now available to better define conservation measures for the taxon.  相似文献   

17.
Arctomecon humilis is a critically endangered species endemic to the Moenkopi shale of Washington County, Utah. Recovery plans for the species would be improved by an understanding of genetic diversity and gene flow among its remaining populations. Ten variable isozyme loci were used to calculate genetic diversity statistics for study populations. Westerly populations possessed higher levels of genetic variability than other populations at the same isozyme loci. Three of the populations exhibited significant deviations from Hardy-Weinberg expectations. No correlation existed between genetic distance and geographic distance. Most of the genetic diversity was distributed among populations with little gene flow between populations, suggesting that observed genetic differences may arise from genetic drift. For the westerly populations, similar genotypes were observed in the seedling and old age classes, while intermediate age classes typically possessed an alternate set of genotypes at Pgi-2. Mean heterozygosity increased with age class across populations. Westerly populations of A. humilis shared more alleles with the nearest geographic population of A. californica than other populations. Since the westerly populations contained more genetic variability and more alleles in common with a near relative, they may be relictual. Other populations may contain less genetic diversity due to founder effects and/or genetic drift.  相似文献   

18.
The objectives of this study were to assess the level of genetic variability and population differentiation within captive populations of an endangered large mammal, Baird's tapir (Tapirus bairdii). We genotyped 37 captive animals from North American (NA) and Central American (CA) zoos and conservation ranches using six polymorphic microsatellite loci. Standard indices of genetic variability (allelic richness and diversity, and heterozygosity) were estimated and compared between captive populations, and between captive and wild population samples. In addition, we evaluated levels of population differentiation using Weir and Cockerham's version of Wright's F-statistics. The results indicate that the NA and CA captive populations of Baird's tapirs have retained levels of genetic variability similar to that measured in a wild population. However, inbreeding coefficients estimated from the molecular data indicate that the CA captive population is at increased risk of losing genetic variability due to inbreeding. Despite this, estimated levels of population differentiation indicate limited divergence of the CA captive population from the wild population. Careful management appears to have kept inbreeding coefficients low in the NA captive population; however, population differentiation levels indicate that the NA population has experienced increased divergence from wild populations due to a founder effect and isolation. Based on these results, we conclude that intermittent exchanges of Baird's tapirs between the NA and CA captive populations will benefit both populations by increasing genetic variability and effective population size, while reducing inbreeding and divergence from wild populations. Zoo Biol 23:521–531, 2004. © 2004 Wiley-Liss, Inc.  相似文献   

19.
Species introductions provide a rare opportunity to study rapid evolutionary and genetic processes in natural systems, often under novel environmental pressures. Few empirical studies have been able to characterize genetic founder effects associated with demographic bottlenecks at the earliest stages of species introductions. This study utilizes prior mitochondrial DNA information which identifies the putative source population for a recently established ( c . 7 years between import and sampling) species introduction. We investigated the evidence for a founder effect in a highly successful introduction of a Puerto Rican Anolis species that has established itself on Dominica to the localized exclusion of the native, endemic anole. Five highly polymorphic microsatellite loci were used to explore the partitioning of genetic diversity within and between native source, native nonsource, and introduced populations of Anolis cristatellus . Group comparisons reveal significantly lower allelic richness and expected heterozygosity in introduced populations compared to native populations; however, tests for heterozygosity excess relative to allelic richness failed to provide consistent evidence for a founder effect within introduced populations. Significant levels of within-population genetic variation were present in both native and introduced populations. We suggest that aspects of the reproductive ecology of Anolis (high fecundity, sperm storage and multiple paternity) offer an important mechanism by which genetic variation may be maintained following demographic bottlenecks and founder events in some squamate taxa.  相似文献   

20.
The introduction of non‐native species can have long‐term effects on native plant and animal communities. Introduced populations are occasionally not well understood and offer opportunities to evaluate changes in genetic structure through time and major population changes such as bottleneck and or founder events. Invasive species can often evolve rapidly in new and novel environments, which could be essential to their long‐term success. Sika deer are native to East Asia, and their introduction and establishment to the Delmarva Peninsula, USA, is poorly documented, but probably involved ≥1 founder and/or bottleneck events. We quantified neutral genetic diversity in the introduced population and compared genetic differentiation and diversity to the presumed source population from Yakushima Island, Japan, and a captive population of sika deer in Harrington, Delaware, USA. Based on the data from 10 microsatellite DNA loci, we observed reduced genetic variation attributable to founder events, support for historic hybridization events, and evidence that the population did originate from Yakushima Island stocks. Estimates of population structure through Bayesian clustering and demographic history derived from approximate Bayesian computation (ABC), were consistent with the hypothesized founder history of the introduced population in both timing and effective population size (approximately five effective breeding individuals, an estimated 36 generations ago). Our ABC results further supported a single introduction into the wild happening before sika deer spread throughout the Delmarva. We conclude that free‐ranging sika deer on Delmarva are descended from ca. five individuals introduced about 100 years ago from captive stocks of deer maintained in the United Kingdom. Free‐ranging sika deer on Delmarva have lost neutral diversity due to founder and bottleneck events, yet populations have expanded in recent decades and show no evidence of abnormalities associated with inbreeding. We suggest management practices including increasing harvest areas and specifically managing sika deer outside of Maryland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号