首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Rats were exposed to 5.6% oxygen environments for up to 2 h. The accumulation of brain DOPA and 5-hydroxytryptophan at 30 min after decarboxylase inhibition was used to estimate cerebral tryosine and tryptophan hydroxylase activity, respectively, in vivo. There was a continuing decrease in tryosine hydroxylase activity during the 2 h in whole brain as well as five brain regions. Tryptophan hydroxylase activity declined during the 1st h, but then increased towards control levels during the 2nd h. There was an increase in brain tryptophan during the 2nd h as well. In whole brain and the five brain regions, there was no significant change in the levels of noradrenaline, dopamine or 5-hydroxytrypamine. During a 1 h exposure to 5.6% oxygen, there was decreased accumulation of noradrenaline, dopamine and 5-hydroxytryptamine after MAO inhibition and decreased accumulation of homovanillic acid and 5-hydroxyindoleacetic acid after probenecid administration. The dercreased synthesis and metabolism of the monoamines is most likely attributable to insufficient brain tissue oxygen as a substrate for the two hydroxylase enzymes.  相似文献   

2.
Abstract: 2-Amino-7-phosphonoheptanoic acid, an antagonist of excitation caused by dicarboxylic amino acids with a selective action on N -methyl-d-aspartate receptors, has been administered in an anticonvulsant dose (1 mmol/kg i.p.) to fed or fasted rats and mice. The drug impaired motor activity in fasted mice. Glucose and amino acids were determined in dissected regions of brain fixed by microwave irradiation. Glucose content was low in the brains of fasted rats and mice but was restored to normal (fed) concentration 45 min after the administration of 2-amino-7-phosphonoheptanoic acid in fasted mice. In fed animals, 2-amino-7-phosphonoheptanoic acid did not change brain aspartate concentration. In fasted animals, aspartate concentration was raised in most brain regions. In fasted rats and mice, 2-amino-7-phosphonoheptanoic acid significantly increased glutamine in rat cortex and mouse striatum, decreased glutamate content in rat striatum, and decreased aspartate concentration in all regions except mouse cortex and striatum. GABA levels were significantly decreased in rat striatum and hippocampus. These changes are consistent with an increased synaptic release of glutamate and aspartate following blockage of their post-synaptic action at selected sites.  相似文献   

3.
The effect of the cerebral 5-hydroxytryptamine system on the turnover of striatal 3,4-dihydroxyphenyl-ethylamine (dopamine) was investigated by measuring the level of dopamine and one of its metabolites in rats depleted of cerebral 5-hydroxytryptamine or treated with a 5-hydroxytryptamine receptor blocker. Treatment with p-chlorophenylalanine induced, in addition to a reduction in striatal 5-hydroxytryptamine and 5-hydroxyindol-3-ylacetic acid, an increase in the striatal concentration of dopamine, a diminution in the concentration of homovanillic acid in the same cerebral area, and a reduction in the rise of this acid after the administration of a butyrophenone derivative or tetrabenazine. Treatment with methysergide also reduced the increase of homovanillic acid induced by the butyrophenone. When probenecid was given to rats treated with p-chlorophenylalanine, homovanillic acid failed to accumulate, whereas the accumulation of 5-hydroxyindol-3-ylacetic acid was unaffected. The decay of dopamine after alpha-methyl-p-tyrosine administration was normal for the first 6 h but was later reduced in rats given p-chlorophenylalanine or methysergide. The results suggest that the lack of activation of 5-hydroxytryptamine receptors leads to a reduction in the turnover of dopamine in the nigrostriatal pathway.  相似文献   

4.
Abstract— Electrical stimulation of the nigrostriatal dopaminergic pathway in rat brain elicited a frequency and current intensity-dependent increased in the formation of homovanillic acid in the basal ganglia. The accumulation of the acid in probenecid-treated animals was constant over 1 h, when maximally stimulated at 25 Hz and 300 μA. Dopamine levels remained unchanged during stimulation. When prior to stimulation the inhibitor of catecholamine synthesis α-methyl- p -tyrosine methyl ester was administered, dopamine levels declined biphasically. Tyrosine and nomifensine, a dopamine uptake inhibitor, and apomorphine had no major effect on the formation of homovanillic acid, whilst α-methyl- p -tyrosine prevented its formation. Our data suggest that dopamine in the striatum is compartmentalized and that the newly-synthesized amine is released and converted to homovanillic acid. Apomorphine decreases dopamine flux only when dopaminergic neurons are at rest. When depolarized neither access of the precursor nor reuptake seem to influence the conversion of dopamine to homovanillic acid.  相似文献   

5.
Human β-endorphin administered intracisternally in a dose of 15 μg per rat increased striatal concentrations of the dopamine metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) as well as producing catalepsy. These effects were inhibited by naloxone. Pargyline-induced decreases in striatal DOPAC and HVA were greater in endorphin-treated than in saline-treated animals, supporting the concept that β-endorphin increases striatal dopamine turnover. β-endorphin increased the rate of decline in striatal dopamine concentration following synthesis inhibition with α-methyltyrosine, further suggesting that endorphin increases striatal dopamine turnover. β-endorphin and probenecid interacted competitively to decrease the effects of each other to increase striatal HVA. Naloxone prevented the effect of endorphin to decrease the HVA response to probenecid. Thus, probenecid cannot be used to assess the effects of endorphin on striatal dopamine turnover. If β-endorphin acts presynaptically to decrease dopamine release in striatum, the increases in striatal DOPAC and HVA probably represent a compensatory attempt to increase dopamine synthesis. Although turnover of dopamine to its metabolites is increased, dopamine release may be suppressed by β-endorphin.  相似文献   

6.
To determine whether 1-tyrosine administration can enhance dopamine synthesis in humans as it does in rats, we measured levels of tyrosine and the major dopamine metabolite, homovanillic acid, in lumbar spinal fluids of 23 patients with Parkinson's disease before and during ingestion of 100 mg/kg/day of tyrosine. Nine patients took 100 mg/kg/day of probenecid in six divided doses for 24 hours prior to each spinal tap; 14 patients did not receive probenecid. L-tyrosine administration significantly increased CSF tyrosine levels in both groups of patients (p less than .01) and significantly increased homovanillic acid levels in the group of patients pretreated with probenecid (p less than .02). These data indicate that l-tyrosine administration can increase dopamine turnover in patients with disorders in which physicians wish to enhance dopaminergic neurotransmission.  相似文献   

7.
Experimental depletion of dopaminergic striatal neurons was induced in mice with the neurotoxin MPTP. To investigate a possible effect of nerve growth factor on the damaged neurons, we injected 4 g into the right cerebral ventricle of mice three days after the last administration of MPTP. We found a significant increase of dopamine and homovanillic acid in the striatum of MPTP treated mice after NGF administration when compared with dopamine and HVA levels in MPTP-treated control mice (p<0.001). The increase of dopamine and homovanillic acid seems to be related to a partial restorative effect of NGF on the damaged dopaminergic cells, since ventricular administration of NGF to normal mice did not increase dopamine or homovanillic acid contents above the levels measured in untreated controls. It appears that administration of nerve growth factor prcduces a beneficial effect on damaged dopaminergic neurons; this effect could be due to stimulation of neuron sprouting from neurons that survived the toxic effect of MPTP. The increase of dopamine levels was seen 8 days after injection of nerve growth factor and was maintained at least until day 25, showing a lasting persistence of the restorative effect.  相似文献   

8.
Daily administration of triiodothyronine (10 μg/100 g) to newborn rats for 30 days produced signs of hyperthyroidism which included accelerated development of physical and behavioural characteristics accompanying maturation. The hyperthyroid rats displayed progressive increases in spontaneous locomotor activity between 14–35 days, which remained elevated well above control levels even at 105 days. Exposure of developing rats to triiodothyronine increased the endogenous levels of striatal tyrosine and tyrosine hydroxylase as well as the concentration of dopamine in hypothalamus, pons-medulla, mid-brain, striatum and hippocampus. The concentration of striatal homovanillic acid and 3,4-dihydroxyphenylacetic acid was also increased in hyperthyroid rats. In contrast, the steady-state levels of norepinephrine remained unaltered resulting in a significant increase in dopamine to norepinephrine ratio in several regions of the brain examined. The elevated levels of dopamine metabolites (homovanillic acid and 3,4-dihydroxyphenylacetic acid) may be due to an increased turnover of dopamine. Our data suggest that increased thyroid hormone levels may lead to an enhanced synthesis as well as utilization of brain catecholamines which in turn may underlie the observed increases in spontaneous locomotor activity.  相似文献   

9.
5-Hydroxytryptamine (5-HT) turnover and dopamine (DA) turnover values were obtained in individual conscious rats by measuring the rates of accumulation of 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in cisternal CSF samples taken from each rat at 0, 30, and 60 min after probenecid (200 mg/kg i.p.) administration. In a separate experiment, 5-HT and DA turnover values were determined in CSF, striatum, and rest of brain of groups of rats killed 0, 30, or 60 min after probenecid. Whole brain turnover values were calculated from striatal and rest of brain values. Mean turnover values using CSF were comparable with both procedures. DA turnover values were greater when based on total (i.e., free + conjugated) DA metabolites than when based on free metabolites. After partial inhibition of monoamine synthesis with the decarboxylase inhibitor DL-alpha- monofluoromethyl -DOPA ( MFMD , 100 mg/kg p.o.) DA and 5-HT turnover values were comparably reduced in whole brain, rest of brain, and CSF but more markedly reduced in the striatum. Mean DA and 5-HT turnover values obtained using CSF were similar with probenecid doses over the range 150-250 mg/kg i.p. but were variable when repeatedly determined in the same rats after administration of 200 mg/kg probenecid. Results in general show that the CSF procedure may be used to determine concurrently both 5-HT and DA turnover (when estimated from the sum of total but not free metabolites) and that it provides a good index of whole brain turnover of these transmitters in the conscious individual rat.  相似文献   

10.
3,4-Dihydroxyphenylethylamine (DA, dopamine) and 5-hydroxytryptamine (5-HT) turnover values were determined in freely moving male rats by measuring the rates of accumulation of the acidic metabolites of the above transmitters, i.e., 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in cisternal cerebrospinal fluid (CSF) samples after probenecid (200 mg/kg i.p.) administration. Determinations on samples before and after acid hydrolysis showed that the latter procedure was necessary for DA turnover determination. Thus whereas total (DOPAC + HVA) increased linearly with time after probenecid, free (DOPAC + HVA) did not. This was because the percentage of DOPAC + HVA in conjugated form increased with time. Determinations on a group of 28 rats during the dark (red light) period showed that cisternal amine metabolite concentrations before probenecid injection did not parallel turnover values. This was probably because individual differences in metabolite egress strongly affect the pre-probenecid values. The poor correlations between CSF tryptophan and 5-HT turnover suggested that differences of brain tryptophan concentration were not major determinants of differences of brain 5-HT metabolism within this group of normal rats. Considering that the rats were of similar weight and that the turnover values were all determined at approximately the same time of day, the three- to fourfold ranges of the turnover values are remarkable. The positive correlation between the DA and 5-HT turnovers of individual rats suggests the existence of common effects on DA and 5-HT turnover in normal rats.  相似文献   

11.
Although the neurotoxic tryptophan-kynurenine pathway metabolite quinolinic acid originates in brain by both local de novo synthesis and entry from blood, its concentrations in brain parenchyma, extracellular fluid, and CSF are normally below blood values. In the present study, an intraperitoneal injection of probenecid (400 mg/kg), an established inhibitor of acid metabolite transport in brain, into gerbils, increased quinolinic acid concentrations in striatal homogenates, CSF, serum, and homogenates of kidney and liver. Direct administration of probenecid (10 mM) into the brain compartment via an in vivo microdialysis probe implanted into the striatum also caused a progressive elevation in both quinolinic acid and homovanillic acid concentrations in the extracellular fluid compartment but was without effect on serum quinolinic acid levels. A model of microdialysis transport showed that the elevations in extracellular fluid quinolinic acid and homovanillic acid levels following intrastriatal application are consistent with probenecid block of a microvascular acid transport mechanism. We conclude that quinolinic acid in brain is maintained at concentrations below blood levels largely by active extrusion via a probenecid-sensitive carrier system.  相似文献   

12.
In vivo microdialysis was employed in order to characterize the steady-state kinetics of the turnover of specific dopamine and serotonin metabolites in the rat striatum 48 h after surgery. Inhibitors of monoamine oxidase (MAO; pargyline) and catechol-O-methyltransferase (COMT; Ro 40-7592) were administered, either separately or in conjunction, at doses sufficient to block these enzymes in the CNS. In some experiments, the acid metabolite carrier was blocked with probenecid. Temporal changes were then observed in the efflux of interstitial dopamine, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA). The fractional rate constants for the accumulation or disappearance of the metabolites could be determined after pharmacological blockade of catabolic enzymes or the acid metabolite carrier. Interstitial 5-HIAA was found to be cleared with a half-life of approximately 2 h. After blockade of either MAO or COMT, HVA disappeared with a half-life of 17 min. Experiments employing probenecid suggested that some of the interstitial HVA was cleared by the acid metabolite carrier, the remainder being cleared by a probenecid-insensitive process, possibly conjugation. After MAO inhibition, DOPAC disappeared with an apparent half-life of 11.3 min. The rate of 3-MT accumulation after pargyline indicated that the majority of interstitial HVA (> 95%) is formed from DOPAC rather than 3-MT. The formation of 3-MT from interstitial dopamine, calculated from the accumulation rate of 3-MT after pargyline, appeared to follow first-order kinetics (k = 0.1 min-1).  相似文献   

13.
The rate of accumulation of 3,4-dihydroxy-phenylalanine following decarboxylase inhibition and of homovanillic acid following probenecid treatment were significantly decreased in streptozotocin-diabetic rats. These changes were observed in both the striatum and limbic forebrain. The Bmax for [3H]spiroperidol receptor binding was significantly increased in both brain regions. All of these neurochemical changes were reversed by insulin replacement therapy. Whether these neurochemical changes are attributable to chronic hyperglycemia or some other aspect of the diabetic state is not known.  相似文献   

14.
K W Perry  R W Fuller 《Life sciences》1992,50(22):1683-1690
Fluoxetine injected i.p. into rats at a dose of 10 mg/kg rapidly increased serotonin concentration in microdialysis fluid from the striatum by at least 4-fold, an increase that was maintained throughout the 3 hr observation period. Dopamine concentration in the microdialysis fluid did not change. The concentration of the two dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, was not changed in the microdialysis fluid, whereas the concentration of the serotonin metabolite, 5-hydroxyindoleacetic acid, was significantly decreased after fluoxetine injection. The increased extracellular concentration of serotonin no doubt resulted from inhibition of the serotonin uptake carrier by fluoxetine, and the lack of change in dopamine is evidence for the specificity of action of this uptake inhibitor.  相似文献   

15.
CSF was continuously withdrawn from the third ventricle of anesthetized rats. CSF 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid concentrations were determined every 15 min by liquid chromatography coupled with electrochemical detection. Acute tyrosine hydroxylase inhibition [with alpha-methyl-p-tyrosine (alpha-MPT)] induced an exponential decline in levels of DOPAC and HVA in CSF. The decline in DOPAC and HVA concentrations was identical in CSF and forebrain but was much slower in the striatum, suggesting that CSF metabolites of 3,4-dihydroxyphenylethylamine (dopamine) reflect whole forebrain metabolites. The decay in CSF DOPAC and HVA levels after dopamine synthesis inhibition was also used as an in vivo index of forebrain dopamine turnover after various pharmacological treatments. Haloperidol pretreatment accelerated this decay, confirming the increase in brain dopamine turnover induced by neuroleptics. After reserpine pretreatment (15 h before), alpha-MPT produced a very sharp decay in levels of DOPAC and HVA. This result indicates that the residual dopamine that cannot be stored after reserpine treatment is very rapidly renewed and metabolized. Nomifensine strongly diminished the slope of DOPAC and HVA level decreases after alpha-MPT, a result which can be explained either by a slower dopamine turnover or by the involvement of storage dopamine pools. These results exemplify the use of monitoring the decay of dopamine metabolites after alpha-MPT administration in the study of the pharmacological action of drugs on the central nervous system of the rat.  相似文献   

16.
Abstract: Male albino rats were exposed to manganese through drinking solution containing MnCl2·4H2O (1 mg/ml) in water. The contents of catecholamines, homovanillic acid, manganese and the activity of monoamine oxidase (MAO) were measured in the corpus striatum at different time intervals up to a period of 360 days. The contents of tyrosine in the corpus striatum and serum were also estimated. Manganese treatment produced an initial increase in the contents of dopamine (DA), norepinephrine (NE), homovanillic acid (H VA) and tyrosine in the corpus striatum. This was followed by a period when concentrations were almost normal (dopamine from 120 to 240 days, norepinephrine at 180 and 240 days and homovanillic acid at 240 days after manganese administration). Thereafter the contents of these substrates declined significantly at 300 and 360 days of treatment. However, these alterations were not correlated with the concentrations of manganese in this region, which gradually increased up to 240 days, and thereafter remained constant until the termination of the experiment. The underlying biochemical mechanisms of manganese-induced sequential changes in the striatal contents of catecholamines have been discussed in relation to the development of psychiatric and neurological phases of manganese poisoning.  相似文献   

17.
Abstract— Suckling mice were exposed to manganese from birth indirectly through their mothers and then directly through drinking water after weaning. The growth and development of these mice and their age-matched controls were almost identical. Motor activity of offspring measured at 30-day intervals showed a significant increase at 60 and 90 days in manganese-treated mice compared to controls. Increased motor activity was associated with significant elevation in the levels of dopamine and norepinephrine in the corpus striatum of treated mice. The levels of striatal tyrosine, homovanillic acid and manganese were also significantly increased in mice after manganese exposure. Thus an animal model of early manganese poisoning has been developed with a possible role of striatal amines in the production of behavioral dysfunction in the treated mice. Implications of these findings are discussed in relation to the manifestations of the psychiatric phase of early manganese poisoning in man.  相似文献   

18.
Abstract: Amino acid and monoamine concentrations were examined in tissue extracts of caudate nucleus of genetic substrains of BALB/c mice susceptible or resistant to audiogenic seizures. Amino acids [aspartate, glutamate, glycine, taurine, serine, γ-aminobutyric acid (GABA)], monoamines, and related metabolites were separated by isocratic reverse-phase chromatography and detected by a coulometric electrode array system. In situ activity of tyrosine hydroxylase and tryptophan hydroxylase were determined by measuring the accumulation of L-DOPA and 5-hydroxytryptophan after administration of the decarboxylase inhibitor NSD-1015. Highly significant decreases in concentrations of both excitatory (glutamate and aspartate) and inhibitory amino acids (GABA and taurine) were observed in extracts of caudate nucleus of seizure-prone mice. Substantial decreases in concentrations of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, were also noted. Decreased accumulation of L-DOPA after NSD-1015 administration provided evidence for decreased tyrosine hydroxylase activity and decreased DA synthesis in striatum of seizure-prone mice compared with seizure-resistant mice. Decreased concentrations of the DA metabolite 3-methoxytyramine (after NSD-1015 administration) suggested that DA release was also compromised in seizure-prone mice. No significant difference in 5-hydroxytryptophan accumulation in striatum of seizure-prone and seizure-resistant mice suggested that tryptophan hydroxylase activity and serotonin synthesis were not affected. The data suggest that seizure-prone BALB/c mice have a deficiency in intracellular content of both excitatory and inhibitory amino acids. The data also raise the issue of whether GABAergic interactions with the nigrostriatal DA system are important in the regulation of audiogenic seizure susceptibility.  相似文献   

19.
Summary The activity of the sympathetic nervous system in mice that were either fed ad libitum, food restricted or fasted was estimated by measuring the accumulation of dopamine following the inhibition of dopamine -hydroxylase activity. Mice in each group were injected with the dopamine -hydroxylase inhibitor 1-cyclohexyl-2-mercaptoimidazole and were exposed to either 30°C (warm) or 4°C (cold). Mice were killed 1 h after the injection. Both heart and brown adipose tissue were then quickly removed and homogenized in ice-cold perchloric acid. Dopamine and noradrenaline were determined using high performance liquid chromatography. Regardless of whether mice were warm or cold exposed, both content and concentration of brown adipose tissue and dopamine were predictably higher in 1-cyclohexyl-2-mercaptoimidazole-injected mice than in non-injected animals. In mice fed ad libitum, post-injection content and concentration of dopamine in both brown adipose tissue and heart were higher in cold-exposed mice than in warm-exposed animals. In food-restricted and fasted mice, post-injection concentrations of dopamine in brown adipose tissue were higher in cold-exposed mice than in warm-exposed animals. In food-restricted and fasted mice there was no difference between warm- and cold-exposed animals with respect to post-injection contents and concentrations of dopamine in heart tissue. In fasted mice there was no difference between warm- and cold-exposed animals in post-injection content of dopamine in brown adipose tissue. This study provides further evidence that fasting, in contrast to food restriction, may blunt the tissue sympathetic nervous system response in brown adipose tissue of cold-exposed mice.Abbreviations BAT brown adipose tissue - CHMI 1-cyclohexyl-2-mercaptoimidazole - DA dopamine - DHBA dihydroxybenzylamine - EDTA ethylenediaminetetra-acetic acid - HPLC high performance liquid chromatography - NA noradrenaline - PCA perchloric acid - SNS sympathetic nervous system  相似文献   

20.
Dysfunction of the proteasome has been suggested to contribute in the degeneration of nigrostriatal dopaminergic neurons. Here, we investigated to determine whether systematic administration of proteasome inhibitor, carbobenzoxy-l-γ-t-butyl-l-glutamyl-l-alanyl-l-leucinal (PSI) protects against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Three administrations of MPTP at 1-h intervals to mice reduced significantly the concentration of dopamine, DOPAC (3,4-dihydroxyphenylacetic acid) and HVA (homovanillic acid) in the striatum after 5 days. In contrast, PSI (0.3 and 1.0 mg/kg) prevented a significant decrease in dopamine, DOPAC and HVA contents of the striatum 5 days after MPTP treatment. In our Western blot analysis study, PSI at a dose of 1.0 mg/kg prevented a significant decrease in TH (tyrosine hydroxylase) protein and a significant increase in glial fibrillary acidic protein 5 days after MPTP treatment. Furthermore, our immunohistochemical study showed that PSI at a dose of 1.0 mg/kg prevented a significant loss in TH immunopositive neurons in the striatum and substantia nigra 5 days after MPTP treatment. In contrast, PSI caused a significant increase in the number of intense ubiquitin immunopositive cells in the striatum and substantia nigra 5 days after MPTP treatment. These results indicate that proteasome inhibitors can protect against MPTP neurotoxicity in mice. The neuroprotective effect of PSI against dopaminergic cell damage may be mediated by the elevation of ubiquitination. Thus, our findings provide further valuable information for the pathogenesis of Parkinson’s disease. Takuya Oshikawa and Hayato Kuroiwa contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号