首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Gloor GB  Moretti J  Mouyal J  Keeler KJ 《Genetics》2000,155(4):1821-1830
The footprints remaining following somatic P-element excision from the Drosophila white locus were recovered and characterized. Two different types of footprints were observed. Over 75% of the footprints were short, composed of 4 or 7 nucleotides of the P-element inverted terminal repeat, and were similar to those found in a previously described plasmid excision assay. The remaining footprints were composed of 14-18 nucleotides of both inverted terminal repeats. These large footprints were indistinguishable from those recovered following germline P-element excision. Enhanced expression of the Drosophila homologue of the Ku70 protein did not affect the structure of the somatic footprints. Therefore, this protein is not a limiting factor for double-strand break repair by nonhomologous end-joining in Drosophila somatic cells.  相似文献   

5.
Tijsterman M  Pothof J  Plasterk RH 《Genetics》2002,161(2):651-660
Mismatch-repair-deficient mutants were initially recognized as mutation-prone derivatives of bacteria, and later mismatch repair deficiency was found to predispose humans to colon cancers (HNPCC). We generated mismatch-repair-deficient Caenorhabditis elegans by deleting the msh-6 gene and analyzed the fidelity of transmission of genetic information to subsequent generations. msh-6-defective animals show an elevated level of spontaneous mutants in both the male and female germline; also repeated DNA tracts are unstable. To monitor DNA repeat instability in somatic tissue, we developed a sensitive system, making use of heat-shock promoter-driven lacZ transgenes, but with a repeat that puts this reporter gene out of frame. In genetic msh-6-deficient animals lacZ+ patches are observed as a result of somatic repeat instability. RNA interference by feeding wild-type animals dsRNA homologous to msh-2 or msh-6 also resulted in somatic DNA instability, as well as in germline mutagenesis, indicating that one can use C. elegans as a model system to discover genes involved in maintaining DNA stability by large-scale RNAi screens.  相似文献   

6.
Interactions between the somatic gonad and the germ line influence the amplification, maintenance, and differentiation of germ cells. In Caenorhabditis elegans, the distal tip cell/germline interaction promotes a mitotic fate and/or inhibits meiosis through GLP-1/Notch signaling. However, GLP-1-mediated signaling alone is not sufficient for a wild-type level of germline proliferation. Here, we provide evidence that specific cells of the somatic gonadal sheath lineage influence amplification, differentiation, and the potential for tumorigenesis of the germ line. First, an interaction between the distal-most pair of sheath cells and the proliferation zone of the germ line is required for larval germline amplification. Second, we show that insufficient larval germline amplification retards gonad elongation and thus delays meiotic entry. Third, a more severe delay in meiotic entry, as is exhibited in certain mutant backgrounds, inappropriately juxtaposes undifferentiated germ cells with cells of the proximal sheath lineage, leading to the formation of a proximal germline tumor derived from undifferentiated germ cells. Tumors derived from dedifferentiated germ cells, however, respond to the proximal interaction differently depending on the mutant background. Our study underscores the importance of strict developmental coordination between neighboring tissues. We discuss these results in the context of mechanisms that may underlie tumorigenesis.  相似文献   

7.
8.
Genomic DNA of calf thymus contains 1.5 times as much 5-methylcytosine as similar sperm DNA, but the major EcoRI repeat fragment from satellite I of thymus contains ten times as much 5-methylcytosine as the corresponding fragment from sperm DNA. Restriction enzyme analyses of the total DNA and the satellite I fragment show that three HpaII sites in the fragment are completely unmethylated in sperm but fully methylated in thymus DNA. Under-methylation of many sites in the satellite DNAs can probably account for the lower level of methylation of sperm DNA rather than hemimethylation as previously suggested. These results are also discussed in relation to maintenance and de novo (initiation-type) methylases.  相似文献   

9.
Hughes SE  Huang C  Kornfeld K 《Genetics》2011,189(1):341-356
Aging is an important feature of animal biology characterized by progressive, degenerative changes in somatic and reproductive tissues. The rate of age-related degeneration is genetically controlled, since genes that influence lifespan have been identified. However, little is known about genes that affect reproductive aging or aging of specific somatic tissues. To identify genes that are important for controlling these degenerative changes, we used chemical mutagenesis to perform forward genetic screens in Caenorhabditis elegans. By conducting a screen focused on somatic aging, we identified mutant hermaphrodites that displayed extended periods of pharyngeal pumping, body movement, or survival. One of these mutations is a novel allele of the age-1 gene. age-1 encodes a phosphatidylinositol-3-kinase (PI3K) that functions in the insulin/insulin-like growth factor-1 (IGF-1) signaling pathway. age-1(am88) creates a missense change in the conserved PIK domain and causes dramatic extensions of the pharyngeal pumping and body movement spans, as well as a twofold extension of the lifespan. By conducting screens focused on reproductive aging in mated hermaphrodites, we identified mutants that displayed increased progeny production late in life. To characterize these mutations, we developed quantitative measurements of age-related morphological changes in the gonad. The am117 mutation delayed age-related declines in progeny production and morphological changes in the gonad. These studies provide new insights into the genetic regulation of age-related degenerative changes in somatic and reproductive tissues.  相似文献   

10.
One hundred years after Weismann's seminal observations, the mechanisms that distinguish the germline from the soma still remain poorly understood. This review describes recent studies in Caenorhabditis elegans, which suggest that germ cells utilize unique mechanisms to regulate gene expression. In particular, mechanisms that repress the production of mRNAs appear to be essential to maintain germ cell fate and viability.  相似文献   

11.
12.

Background

The tumor suppressor Rb/E2F regulates gene expression to control differentiation in multiple tissues during development, although how it directs tissue-specific gene regulation in vivo is poorly understood.

Results

We determined the genome-wide binding profiles for Caenorhabditis elegans Rb/E2F-like components in the germline, in the intestine and broadly throughout the soma, and uncovered highly tissue-specific binding patterns and target genes. Chromatin association by LIN-35, the C. elegans ortholog of Rb, is impaired in the germline but robust in the soma, a characteristic that might govern differential effects on gene expression in the two cell types. In the intestine, LIN-35 and the heterochromatin protein HPL-2, the ortholog of Hp1, coordinately bind at many sites lacking E2F. Finally, selected direct target genes contribute to the soma-to-germline transformation of lin-35 mutants, including mes-4, a soma-specific target that promotes H3K36 methylation, and csr-1, a germline-specific target that functions in a 22G small RNA pathway.

Conclusions

In sum, identification of tissue-specific binding profiles and effector target genes reveals important insights into the mechanisms by which Rb/E2F controls distinct cell fates in vivo.  相似文献   

13.
We investigated the control of proliferation and differentiation in the larval Caenorhabditis elegans hermaphrodite germ line through analysis of glp-1 and lag-2 mutants, cell ablations, and ultrastructural data. After the first several rounds of germ cell division, GLP-1, a receptor of the LIN-12/Notch family, governs germline proliferation. We analyzed the proximal proliferation (Pro) phenotype in glp-1(ar202) and found that initial meiosis was delayed and spatially mispositioned. This is due, at least in part, to a heightened response of the mutant GLP-1 receptor to multiple sources of the somatic ligand LAG-2, including the proximal somatic gonad. We investigated whether proximal LAG-2 affects germline proliferation in the wild type. Our results indicate that (1) LAG-2 is necessary for GLP-1-mediated germline proliferation and prevention of early meiosis, and (2) several distinct anatomical sources of LAG-2 in the larval somatic gonad functionally overlap to promote proliferation and prevent early meiosis. Ultrastructural studies suggest that mitosis is not restricted to areas of direct DTC-germ line contact and that the germ line shares a common cytoplasm in larval stages. We propose that downregulation of the GLP-1 signaling pathway in the proximal germ line at the time of meiotic onset is under tight temporal and spatial control.  相似文献   

14.
Trehalose extends longevity in the nematode Caenorhabditis elegans   总被引:1,自引:0,他引:1  
Trehalose is a disaccharide of glucose found in diverse organisms and is suggested to act as a stress protectant against heat, cold, desiccation, anoxia, and oxidation. Here, we demonstrate that treatment of Caenorhabditis elegans with trehalose starting from the young‐adult stage extended the mean life span by over 30% without any side effects. Surprisingly, trehalose treatment starting even from the old‐adult stage shortly thereafter retarded the age‐associated decline in survivorship and extended the remaining life span by 60%. Demographic analyses of age‐specific mortality rates revealed that trehalose extended the life span by lowering age‐independent vulnerability. Moreover, trehalose increased the reproductive span and retarded the age‐associated decrease in pharyngeal‐pumping rate and the accumulation of lipofuscin autofluorescence. Trehalose also enhanced thermotolerance and reduced polyglutamine aggregation. These results suggest that trehalose suppressed aging by counteracting internal or external stresses that disrupt protein homeostasis. On the other hand, the life span‐extending effect of trehalose was abolished in long‐lived insulin/IGF‐1‐like receptor (daf‐2) mutants. RNA interference‐mediated inactivation of the trehalose‐biosynthesis genes trehalose‐6‐phosphate synthase‐1 (tps‐1) and tps‐2, which are known to be up‐regulated in daf‐2 mutants, decreased the daf‐2 life span. These findings indicate that a reduction in insulin/IGF‐1‐like signaling extends life span, at least in part, through the aging‐suppressor function of trehalose. Trehalose may be a lead compound for potential nutraceutical intervention of the aging process.  相似文献   

15.
The seasonal fluctuations in condition, nutrition and somatic energy content, and gonad development cycle were investigated in chub Leuciscus pyrenaicus from the headwaters of the Guadalete River, a freshwater ecosystem characterized by strong seasonal fluctuations in discharge and water level, temperature and food supply. The relationship between somatic stage and gonad cycle was also investigated and discussed. Condition, nutrition and somatic energy cycles could be divided into two distinct periods: from April to January with summer decreases and autumn increments, which is common for juveniles and mature fish; and from January to March, when juveniles and mature fish displayed different temporal variations related to the reproductive cycle. Gonad development took place from the end of the winter into the summer, the testes developing before the ovaries. Spawning started in late spring (May) and continued into summer (June and July), with fish quiescent by autumn (September). The results suggest that, for L. pyrenaicus , both environmental factors (e.g. food supply, water temperature) and reproduction needs affect the condition, nutrition and somatic energy storage of fish, which have been used as indicators of the physiological status of the population.  相似文献   

16.
Relatively simple model organisms such as yeast, fruit-flies and the nematode, Caenorhabditis elegans, have proven to be invaluable resources in biological studies. An example is the widespread use of C. elegans to investigate the complex process of ageing. An important issue when interpreting results from these studies is the similarity of the observed C. elegans mortality pattern in the laboratory to that expected in its natural environment. We found that the longevity of C. elegans under more natural conditions is reduced up to 10-fold compared with standard laboratory culture conditions. Additionally, C. elegans mutants that live twice as long as wild-type worms in laboratory conditions typically die sooner than wild-type worms in a natural soil. These results indicate that conclusions regarding extended longevity drawn from standard laboratory assays may not extend to animals in their native environment.  相似文献   

17.
Neither genetic nor environmental factors fully account for variability in individual longevity: genetically identical invertebrates in homogenous environments often experience no less variability in lifespan than outbred human populations. Such variability is often assumed to result from stochasticity in damage accumulation over time; however, the identification of early-life gene expression states that predict future longevity would suggest that lifespan is least in part epigenetically determined. Such "biomarkers of aging," genetic or otherwise, nevertheless remain rare. In this work, we sought early-life differences in organismal robustness in unperturbed individuals and examined the utility of microRNAs, known regulators of lifespan, development, and robustness, as aging biomarkers. We quantitatively examined Caenorhabditis elegans reared individually in a novel apparatus and observed throughout their lives. Early-to-mid-adulthood measures of homeostatic ability jointly predict 62% of longevity variability. Though correlated, markers of growth/muscle maintenance and of metabolic by-products ("age pigments") report independently on lifespan, suggesting that graceful aging is not a single process. We further identified three microRNAs in which early-adulthood expression patterns individually predict up to 47% of lifespan differences. Though expression of each increases throughout this time, mir-71 and mir-246 correlate with lifespan, while mir-239 anti-correlates. Two of these three microRNA "biomarkers of aging" act upstream in insulin/IGF-1-like signaling (IIS) and other known longevity pathways, thus we infer that these microRNAs not only report on but also likely determine longevity. Thus, fluctuations in early-life IIS, due to variation in these microRNAs and from other causes, may determine individual lifespan.  相似文献   

18.
19.
Excision of a Mos1 transposon in the germline of Caenorhabditis elegans generates a double-strand break in the chromosome. We demonstrate that breaks are most prominently repaired by gene conversion from the homolog, but also rarely by nonhomologous end-joining. In some cases, gene conversion events are resolved by crossing over. Surprisingly, expression of the transposase using an intestine-specific promoter can induce repair, raising the possibility that activation of transposase expression in somatic cells can lead to transposition of Mos1 in the germline.  相似文献   

20.
We have isolated several new EMS-induced, long-lived mutants of Caenorhabditis elegans, using a novel screen that eliminates the need for replica plating. Three new alleles of age-1 (z10, z12, and z25) were identified by failure to complement age-1 (hx546) for life span extension; these alleles had life spans ranging from 18.9 to 25.9 days at 25°C, with an average 46% increase in life span. After backcrossing, alleles were examined in a wild-type background for resistance to several environmental stresses: heat (35°C), ultraviolet (UV) light (20 J/m2), and hydrogen peroxide (H2O2) (0.5 M). Two replicates of the test of thermotolerance were completed on each strain, giving mean survivals of 842 min (hx546), 810 min (z10), 862 min (z12), and 860 min (z25), compared to 562 min for wild type. All the age-1 alleles were significantly tolerant, compared with wild type (P < 0.001). Two replicates for UV resistance were also completed with mean survivals of 103, 118, 108, and 89 hr, respectively, compared to 72 hr for wild type. One test of hydrogen peroxide resistance has shown that z12 and N2 had a mean survival of 41 hr, while the other age-1 alleles had mean survival of 54 hr (z10), and 62 hr (z25); H2O2 resistance is the only environmental stress that differentiates among the age-1 alleles. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号