首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to quantify the abilities of mouse liver parenchymal and nonparenchymal cells with respect to (i) cholesteryl ester (CE) selective uptake from low-density lipoproteins (LDL), oxidized LDL (OxLDL), and high-density lipoprotein (HDL); and (ii) their free cholesterol efflux to HDL. The preparations of cells were incubated with lipoproteins labelled either in protein with iodine-125 or in CE with 3H-cholesterol oleate, and lipoprotein-protein and lipoprotein-CE associations were measured. The associations of LDL-protein and LDL-CE with nonparenchymal cells were 5- and 2-fold greater, respectively, than with parenchymal cells. However, in terms of CE-selective uptake (CE association minus protein association) both types of cell were equivalent. Similar results were obtained with OxLDL, but both types of cell showed higher abilities in OxLDL-CE than in LDL-CE selective uptake (on average by 3.4-fold). The association of HDL-protein with nonparenchymal cells was 3x that with parenchymal cells; however, nonparenchymal cells associated 45% less HDL-CE. Contrary to parenchymal cells, nonparenchymal cells did not show HDL-CE selective uptake activity. Thus parenchymal cells selectively take CE from the 3 types of lipoproteins, whereas nonparenchymal cells exert this function only on LDL and OxLDL. Efflux was 3.5-fold more important in nonparenchymal than in parenchymal cells.  相似文献   

2.
Scavenger receptor-mediated uptake of oxidized LDL (oxLDL) is thought to be the major mechanism of foam cell generation in atherosclerotic lesions. Recent data has indicated that native LDL is also capable of contributing to foam cell formation via low-affinity receptor-independent LDL particle pinocytosis and selective cholesteryl ester (CE) uptake. In the current investigation, Cu2+-induced LDL oxidation was found to inhibit macrophage selective CE uptake. Impairment of selective CE uptake was significant with LDL oxidized for as little as 30 min and correlated with oxidative fragmentation of apoB. In contrast, LDL aggregation, LDL CE oxidation, and the enhancement of scavenger receptor-mediated LDL particle uptake required at least 3 h of oxidation. Selective CE uptake did not require expression of the LDL receptor (LDL-R) and was inhibited similarly by LDL oxidation in LDL-R−/− versus WT macrophages. Inhibition of selective uptake was also observed when cells were pretreated or cotreated with minimally oxidized LDL, indicating a direct inhibitory effect of this oxLDL on macrophages. Consistent with the effect on LDL CE uptake, minimal LDL oxidation almost completely prevented LDL-induced foam cell formation. These data demonstrate a novel inhibitory effect of mildly oxidized LDL that may reduce foam cell formation in atherosclerosis.  相似文献   

3.
Plasma cholesterol from low- and high-density lipoproteins (LDL and HDL) are cleared from the circulation by specific receptors that either totally degrade lipoproteins as the LDL receptor or selectively take up their cholesteryl esters (CE) like the scavenger receptor class B type I (SR-BI). The aim of the present study was to define the effect of apoC-I on the uptake of LDL and HDL3 by HepG2 cells. In experiments conducted with exogenously added purified apoC-I, no significant effect was observed on lipoprotein–protein association and degradation; however, LDL- and HDL3-CE selective uptake was significantly reduced in a dose-dependent manner. This study also shows that apoC-I has the ability to associate with HepG2 cells and with LDL and HDL3. Moreover, pre-incubation of HepG2 cells with apoC-I reduces HDL3-CE selective uptake and pre-incubation of LDL and HDL3 with apoC-I decreases their CE selective uptake by HepG2 cells. Thus, apoC-I can accomplish its inhibitory effect on SR-BI activity by either binding to SR-BI or lipoproteins. We conclude that by reducing hepatic lipoprotein-CE selective uptake, apoC-I has an atherogenic character.  相似文献   

4.
Scavenger receptor class B type I (SR-BI) has been identified as a functional HDL binding protein that can mediate the selective uptake of cholesteryl ester (CE) from HDL. To quantify the in vivo role of SR-BI in the process of selective uptake, HDL was labeled with cholesteryl ether ([(3)H] CEt-HDL) and (125)I-tyramine cellobiose ([(125)I]TC-HDL) and injected into SR-BI knockout (KO) and wild-type (WT) mice. In SR-BI KO mice, the clearance of HDL-CE from the blood circulation was greatly diminished (0.043 +/- 0.004 pools/h for SR-BI KO mice vs. 0.106 +/- 0.004 pools/h for WT mice), while liver and adrenal uptake were greatly reduced. Utilization of double-labeled HDL ([(3)H]CEt and [(125)I]TC) indicated the total absence in vivo of the selective decay and liver uptake of CE from HDL in SR-BI KO mice. Parenchymal cells isolated from SR-BI KO mice showed similar association values for [(3)H]CEt and [(125)I]TC in contrast to WT cells, indicating that in parenchymal liver cells SR-BI is the only molecule exerting selective CE uptake from HDL. Thus, in vivo and in vitro, SR-BI is the sole molecule mediating the selective uptake of CE from HDL by the liver and the adrenals, making it the unique target to modulate reverse cholesterol transport.  相似文献   

5.
High density lipoprotein (HDL) can protect low density lipoprotein (LDL) against oxidation. Oxidized cholesterol esters from LDL can be transferred to HDL and efficiently and selectively removed from the blood circulation by the liver and adrenal in vivo. In the present study, we investigated whether scavenger receptor BI (SR-BI) is responsible for this process. At 30 min after injection, the selective uptake of oxidized cholesterol esters from HDL for liver and adrenal was 2.3- and 2.6-fold higher, respectively, than for native cholesterol esters, whereas other tissues showed no significant difference. The selective uptake of oxidized cholesterol esters from HDL by isolated liver parenchymal cells could be blocked for 75% by oxidized LDL and for 50% by phosphatidylserine liposomes, both of which are known substrates of SR-BI. In vivo uptake of oxidized cholesterol esters from HDL by parenchymal cells decreased by 64 and 81% when rats were treated with estradiol and a high cholesterol diet, respectively, whereas Kupffer cells showed 660 and 475% increases, respectively. These contrasting changes in oxidized cholesterol ester uptake were accompanied by similar contrasting changes in SR-BI expression of parenchymal and Kupffer cells. The rates of SR-BI-mediated selective uptake of oxidized and native cholesterol esters were analyzed in SR-BI-transfected Chinese hamster ovary cells. SR-BI-mediated selective uptake was 3.4-fold higher for oxidized than for native cholesterol esters (30 min of incubation). It is concluded that in addition to the selective uptake of native cholesterol esters, SR-BI is responsible for the highly efficient selective uptake of oxidized cholesterol esters from HDL and thus forms an essential mediator in the HDL-associated protection system for atherogenic oxidized cholesterol esters.  相似文献   

6.
Selective uptake of cholesteryl esters (CE) from lipoproteins by cells has been extensively studied with high density lipoproteins (HDL). It is only recently that such a mechanism has been attributed to intermediate and low density lipoproteins (IDL and LDL). Here, we compare the association of proteins and CE from very low density lipoproteins (VLDL), IDL, LDL and HDL3 to HepG2 cells. These lipoproteins were either labelled in proteins with 125I or in CE with 3H-cholesteryl oleate. We show that, at any lipoprotein concentration, protein association to the cells is significantly smaller for IDL, LDL, and HDL3 than CE association, but not for VLDL. At a concentration of 20 microg lipoprotein/mL, these associations reveal CE-selective uptake in the order of 2-, 4-, and 11-fold for IDL, LDL, and HDL3, respectively. These studies reveal that LDL and HDL3 are good selective donors of CE to HepG2 cells, while IDL is a poor donor and VLDL is not a donor. A significant inverse correlation (r2 = 0.973) was found between the total lipid/protein ratios of the four classes of lipoproteins and the extent of CE-selective uptake by HepG2 cells. The fate of 3H-CE of the two best CE donors (LDL and HDL3) was followed in HepG2 cells after 3 h of incubation. Cells were shown to hydrolyze approximately 25% of the 3H-CE of both lipoproteins. However, when the cells were treated with 100 microM of chloroquine, a lysosomotropic agent, 85 and 40% of 3H-CE hydrolysis was lost for LDL and HDL3, respectively. The fate of LDL and HDL3-CE in HepG2 cells deficient in LDL-receptor was found to be the same, indicating that the portion of CE hydrolysis sensitive to chloroquine is not significantly linked to LDL-receptor activity. Thus, in HepG2 cells, the magnitude of CE-selective uptake is inversely correlated with the total lipid/protein ratios of the lipoproteins and CE-selective uptake from the two best CE donors (LDL and HDL3) appears to follow different pathways.  相似文献   

7.
Scavenger receptor, class B, type I (SR-BI) is a cell-surface glycoprotein that mediates selective uptake of high density lipoprotein cholesteryl ester (CE) without the concomitant uptake and degradation of the particle. We have investigated the endocytic and selective uptake of low density lipoprotein (LDL)-CE by SR-BI using COS-7 cells transiently transfected with mouse SR-BI. Analysis of lipoprotein uptake data showed a concentration-dependent LDL-CE-selective uptake when doubly labeled LDL particles were incubated with SR-BI-expressing COS-7 cells. In contrast to vector-transfected cells, SR-BI-expressing COS-7 cells showed marked increases in LDL cell association and CE uptake by the selective uptake pathway, but only a modest increase in CE uptake by the endocytic pathway. SR-BI-mediated LDL-CE-selective uptake exceeded LDL endocytic uptake by 50-100-fold. SR-BI-mediated LDL-CE-selective uptake was not inhibited by the proteoglycan synthesis inhibitor, p-nitrophenyl-beta-D-xylopyranoside or by the sulfation inhibitor sodium chlorate, indicating that SR-BI-mediated LDL-CE uptake occurs independently of LDL interaction with cell-surface proteoglycan. Analyses with subclones of Y1 adrenocortical cells showed that LDL-CE-selective uptake was proportional to the level of SR-BI expression. Furthermore, antibody directed to the extracellular domain of SR-BI blocked LDL-CE-selective uptake in adrenocortical cells. Thus, in cells that normally express SR-BI and in transfected COS-7 cells SR-BI mediates the efficient uptake of LDL-CE via the selective uptake mechanism. These results suggest that SR-BI may influence the metabolism of apoB-containing lipoproteins in vivo by mediating LDL-CE uptake into SR-BI-expressing cells.  相似文献   

8.
Plasma low- and high-density lipoproteins (LDL and HDL) are cleared from the circulation by specific receptors and are either totally degraded or their cholesteryl esters (CE) are selectively delivered to cells by receptors such as the scavenger receptor class B type I (SR-BI). The aim of the present study was to define the effect of apoC-II and apoC-III on the uptake of LDL and HDL by HepG2 cells. Stable transformants were obtained with sense or antisense strategies that secrete 47-294% the normal level of apoC-II or 60-200% that of apoC-III. Different levels of secreted apoC-II or apoC-III had little effect on LDL and HDL protein degradation by HepG2 cells. However, compared to controls, cells under-expressing apoC-II showed a 160% higher capacity to selectively take up HDL-CE, while cells under-expressing apoC-III demonstrated 70 and 160% higher capacity to take up CE from LDL and HDL, respectively. In experiments conducted with exogenously added apoC-II or apoC-III, no significant effect was observed on lipoprotein-protein association/degradation; however, LDL-CE and HDL-CE selective uptake was significantly reduced in a dose-dependent manner. These results indicate that apoC-II and apoC-III inhibit CE-selective uptake.  相似文献   

9.
The Class B type I scavenger receptor I (SR-BI) is a physiologically relevant high density lipoprotein (HDL) receptor that can mediate selective cholesteryl ester (CE) uptake by cells. Direct interaction of apolipoprotein E (apoE) with this receptor has never been demonstrated, and its implication in CE uptake is still controversial. By using a human adrenal cell line (NCI-H295R), we have addressed the role of apoE in binding to SR-BI and in selective CE uptake from lipoproteins to cells. This cell line does not secrete apoE and SR-BI is its major HDL-binding protein. We can now provide evidence that 1) free apoE is a ligand for SR-BI, 2) apoE associated to lipids or in lipoproteins does not modulate binding or CE-selective uptake by the SR-BI pathway, and 3) the direct interaction of free apoE to SR-BI leads to an increase in CE uptake from lipoproteins of both low and high densities. We propose that this direct interaction could modify SR-BI structure in cell membranes and potentiate CE uptake.  相似文献   

10.
Low-density lipoproteins (LDL) are taken up by LDL receptor (LDLr)-dependent and -independent pathways; the role and importance of the latest being less well defined. We analyzed the importance of these pathways in the mouse by comparing LDL binding to primary cultures of hepatocytes from LDLr knockout (LDLr KO) and normal C57BL/6J mice. Saturation curve analysis shows that (125)I-LDL bind specifically to normal and LDLr KO mouse hepatocytes with similar dissociation constants (K(d)) (31.2 and 22.9 microg LDL-protein/ml, respectively). The maximal binding capacity (B(max)) is, however, reduced by 48% in LDLr KO mouse hepatocytes in comparison to normal hepatocytes. Conducting the assay in the presence of a 200-fold excess of high-density lipoprotein-3 (HDL3) reduced by 39% the binding of (125)I-LDL to normal hepatocytes and abolished the binding to the LDLr KO mouse hepatocytes. These data indicate that in normal mouse hepatocytes, the LDLr is responsible for approximately half of the LDL binding while a lipoprotein binding site (LBS), interacting with both LDL and HDL3, is responsible for the other half. It can also be deduced that both receptors/sites have a similar affinity for LDL. The metabolism of LDL-protein and cholesteryl esters (CE) was analyzed in both types of cells. (125)I-LDL-protein degradation was reduced by 95% in LDLr KO hepatocytes compared to normal hepatocytes. Comparing the association of (125)I-LDL and (3)H-CE-LDL revealed a CE-selective uptake of 35.6- and 22-fold for normal and LDLr KO mouse hepatocytes, respectively. Adding a 200-fold excess of HDL3 in the assay reduced by 71% the CE-selective uptake in LDLr KO hepatocytes and by 96% in normal hepatocytes. This indicates that mouse hepatocytes are able to selectively take up CE from LDL by the LBS. The comparison of LDL-CE association also showed that the LBS pathway provides 5-fold more LDL-CE to the cell than the LDLr. Overall, our results indicate that in mouse hepatocytes, LDLr is almost completely responsible for LDL-protein degradation while the LBS is responsible for the major part of LDL-CE entry by a CE-selective uptake pathway.  相似文献   

11.
The physiological role of murine scavenger receptor class B type I (SR-BI) was evaluated by in vivo clearances of human HDL3 and LDL in normal and SR-BI knockout (KO) mice. In normal mice, cholesteryl esters (CEs) were removed faster than proteins, indicating a selective uptake process from both HDL3 and LDL. SR-BI KO mice showed 80% losses of HDL-CE selective uptake and the complete loss of LDL-CE selective uptake in the first phase of clearance. However, the second phase was characterized by an acceleration of CE disappearance in SR-BI KO mice. Thus, SR-BI is the only murine receptor mediating HDL-CE selective uptake, whereas a SR-BI-independent pathway specific to LDL can rescue SR-BI deficiency. The analysis of LDL recovered 3 h after injection in mice from different genotypes revealed that LDLs are significantly depleted in CE (reduction from 19% to 50% of the CE/protein ratios). A smaller LDL size in comparison with that of noninjected LDL was also detectable but was more evident for LDL recovered from normal mice. All LDL preparations migrate faster than noninjected LDL on agarose-barbital gels. Thus, both SR-BI-dependent and -independent pathways lead to substantial changes in LDL.  相似文献   

12.
The relative contribution of the parenchymal and nonparenchymal rat liver cells to the hepatic uptake of human and rat high density lipoprotein (HDL) and low density lipoprotein (LDL) was determined in vivo. Nonparenchymal cells, isolated 6 h after intravenous injection of iodinated human HDL and LDL, contained respectively 4.2 and 6.3 times the amount of trichloroacetic acid-precipitable radioactivity per mg cell protein as compared to parenchymal cells. For rat iodinated HDL and LDL these factors were 3.4 and 4.1, respectively. These results indicate that nonparenchymal liver cells play a substantial role in the hepatic uptake of human and rat HDL and LDL in vivo.  相似文献   

13.
Although sphingomyelin (SM) is a major phospholipid in lipoproteins as well as in the membrane rafts where the scavenger receptor class B type I (SR-BI) is localized, its possible role in the selective uptake of cholesteryl ester (CE) by the SR-BI-mediated pathway is unknown. We investigated the effect of SM in lipoproteins and cell membranes on the selective uptake in three different cell lines: SR-BI-transfected CHO cells, hepatocytes (HepG2), and adrenocortical cells (Y1BS1). Incorporation of SM into recombinant high density lipoprotein (rHDL) containing labeled CE resulted in up to 50% inhibition of the selective uptake of CE in all three cell lines. This inhibition was completely reversed by treatment of rHDL with sphingomyelinase (SMase). Selective uptake from plasma HDL was activated by 22-72% after treatment of HDL with SMase. In addition, pretreatment of the cells with SMase resulted in stimulation of CE uptake from rHDL by CHO and Y1BS1, although not by HepG2. Incorporation of ceramide into rHDL resulted in up to 2-fold stimulation of CE uptake, although pretreatment of cells with egg ceramide had no significant effect. These results show that SM and ceramide in the lipoproteins and the cell membranes regulate the SR-BI-mediated selective uptake of CE, possibly by interacting with the sterol ring or with SR-BI itself.  相似文献   

14.
CD36 and scavenger receptor class B, type I (SR-BI) are both class B scavenger receptors that recognize a broad variety of ligands, including oxidized low density lipoprotein (oxLDL), HDL, anionic phospholipids, and apoptotic cells. In this study we investigated the role of mouse CD36 (mCD36) as a physiological lipoprotein receptor. We compared the association of various lipoprotein particles with mCD36 and mSR-BI expressed in COS cells by adenovirus-mediated gene transfer. mCD36 bound human oxLDL and mouse HDL with high affinity. Human LDL bound poorly to mCD36, indicating that mCD36 is unlikely to play a significant role in LDL metabolism. The ability of mCD36 to mediate the selective uptake of cholesteryl esters (CE) from receptor-bound HDL was assessed. In comparison with mSR-BI, mCD36 inefficiently mediated the selective uptake of CE. Hepatic overexpression of mCD36 in C57BL/6 mice by adenovirus-mediated gene transfer did not result in significant alterations in plasma LDL and HDL levels. We conclude that mCD36, while able to bind HDL with high affinity, does not contribute significantly to HDL or LDL metabolism.  相似文献   

15.
Cells acquire lipoprotein cholesterol by receptor-mediated endocytosis and selective uptake pathways. In the latter case, lipoprotein cholesteryl ester (CE) is transferred to the plasma membrane without endocytosis and degradation of the lipoprotein particle. Previous studies with Y1/E/tet/2/3 murine adrenocortical cells that were engineered to express apolipoprotein (apo) E demonstrated that apoE expression enhances low density lipoprotein (LDL) CE uptake by both selective and endocytic pathways. The present experiments test the hypothesis that apoE-dependent LDL CE selective uptake is mediated by scavenger receptor, class B, type I (SR-BI). Surprisingly, SR-BI expression was not detected in the Y1/E/tet/2/3 clone of Y1 adrenocortical cells, indicating the presence of a distinct apoE-dependent pathway for LDL CE selective uptake. ApoE-dependent LDL CE selective uptake in Y1/E/tet/2/3 cells was inhibited by receptor-associated protein and by activated alpha(2)-macroglobulin (alpha(2)M), suggesting the participation of the LDL receptor-related protein/alpha(2)M receptor. Reagents that inhibited proteoglycan synthesis or removed cell surface chondroitin sulfate proteoglycan completely blocked apoE-dependent LDL CE selective uptake. None of these reagents inhibited SR-BI-mediated LDL CE selective uptake in the Y1-BS1 clone of Y1 cells in which LDL CE selective uptake is mediated by SR-BI. We conclude that LDL CE selective uptake in adrenocortical cells occurs via SR-BI-independent and SR-BI-dependent pathways. The SR-BI-independent pathway is an apoE-dependent process that involves both chondroitin sulfate proteoglycans and an alpha(2)M receptor.  相似文献   

16.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) by the liver. Hepatic lipase (HL) promotes this lipid uptake independent from lipolysis. The role of SR-BI in this HL-mediated increase in selective CE uptake was explored. Baby hamster kidney (BHK) cells were transfected with the SR-BI cDNA yielding cells with SR-BI expression, whereas no SR-BI was detected in control cells. These cells were incubated in medium containing 125I [3H]cholesteryl oleyl ether-labeled HDL3 (d = 1.125-1.21 g/ml) and HL was absent or present. Tetrahydrolipstatin (THL) blocked lipolysis. In control BHK cells and in BHK cells with SR-BI, HDL3 selective CE uptake (3H-125I) was detectable and SR-BI promoted this uptake. In both cell types, HL mediated an increase in selective CE uptake from HDL3. Quantitatively, this HL effect was similar in control BHK cells and in BHK cells with SR-BI. These results suggest that HL promotes selective uptake independent from SR-BI. To investigate the role of cell surface proteoglycans on the HL-mediated HDL3 uptake, proteoglycan deficiency was induced by heparinase digestion. Proteoglycan deficiency decreased the HL-mediated promotion of selective CE uptake. In summary, the stimulating HL effect on HDL selective CE uptake is independent from SR-BI and lipolysis. Proteoglycans are a requisite for the HL action on selective uptake. Results suggest that (a) pathway(s) distinct from SR-BI mediate(s) selective CE uptake from HDL.  相似文献   

17.
The scavenger receptor class B, type I (SR-BI) mediates the cellular selective uptake of cholesteryl esters and other lipids from high-density lipoproteins (HDL) and low-density lipoproteins (LDL). This process, unlike classical receptor-mediated endocytosis, does not result in lipoprotein degradation. Instead, the lipid depleted particles are released into the medium. Here we show that selective lipid uptake mediated by murine SR-BI can be uncoupled from the endocytosis of HDL or LDL particles. We found that blocking selective lipid uptake by incubating cells with the small chemical inhibitors BLT-1 or BLT-4 did not affect endocytosis of HDL. Similarly, blocking endocytosis by hyperosmotic sucrose or K+ depletion did not prevent selective lipid uptake from HDL or LDL. These findings suggest that mSR-BI-mediated selective uptake occurs at the cell surface upon the association of lipoproteins with mSR-BI and does not require endocytosis of HDL or LDL particles.  相似文献   

18.
Macrophage foam cells are a defining pathologic feature of atherosclerotic lesions. Recent studies have demonstrated that at high concentrations associated with hypercholesterolemia, native LDL induces macrophage lipid accumulation. LDL particles are taken up by macrophages as part of bulk fluid pinocytosis. However, the uptake and metabolism of cholesterol from native LDL during foam cell formation has not been clearly defined. Previous reports have suggested that selective cholesteryl ester (CE) uptake might contribute to cholesterol uptake from LDL independently of particle endocytosis. In this study we demonstrate that the majority of macrophage LDL-derived cholesterol is acquired by selective CE uptake in excess of LDL pinocytosis and degradation. Macrophage selective CE uptake does not saturate at high LDL concentrations and is not down-regulated during cholesterol accumulation. In contrast to CE uptake, macrophages exhibit little selective uptake of free cholesterol (FC) from LDL. Following selective uptake from LDL, CE is rapidly hydrolyzed by a novel chloroquine-sensitive pathway. FC released from LDL-derived CE hydrolysis is largely effluxed from cells but also is subject to ACAT-mediated reesterification. These results indicate that selective CE uptake plays a major role in macrophage metabolism of LDL.  相似文献   

19.
Class B scavenger receptors (SR-Bs) interact with native, acetylated and oxidized low-density lipoprotein (LDL, AcLDL and OxLDL), high-density lipoprotein (HDL3) and maleylated BSA (M-BSA). The aim of this study was to analyze the catabolism of CD36- and LIMPII-analogous-1 (CLA-1), the human orthologue for the scavenger receptor class B type I (SR-BI), and CD36 ligands in HepG2 (human hepatoma) cells. Saturation binding experiments revealed moderate-affinity binding sites for all the SR-B ligands tested with dissociation constants ranging from 20 to 30 microg.mL-1. Competition binding studies at 4 degrees C showed that HDL and modified and native LDL share common binding site(s), as OxLDL competed for the binding of 125I-LDL and 125I-HDL3 and vice versa, and that only M-BSA and LDL may have distinct binding sites. Degradation/association ratios for SR-B ligands show that LDL is very efficiently degraded, while M-BSA and HDL3 are poorly degraded. The modified LDL degradation/association ratio is equivalent to 60% of the LDL degradation ratio, but is three times higher than that of HDL3. All lipoproteins were good cholesteryl ester (CE) donors to HepG2 cells, as a 3.6-4.7-fold CE-selective uptake ([3H]CE association/125I-protein association) was measured. M-BSA efficiently competed for the CE-selective uptake of LDL-, OxLDL-, AcLDL- and HDL3-CE. All other lipoproteins tested were also good competitors with some minor variations. Hydrolysis of [3H]CE-lipoproteins in the presence of chloroquine demonstrated that modified and native LDL-CE were mainly hydrolyzed in lysosomes, whereas HDL3-CE was hydrolyzed in both lysosomal and extralysosomal compartments. Inhibition of the selective uptake of CE from HDL and native modified LDL by SR-B ligands clearly suggests that CLA-1 and/or CD36 are involved at least partially in this process in HepG2 cells.  相似文献   

20.
Oxidized LDL (OxLDL) that are positively associated with the risk of developing cardiovascular diseases are ligands of scavenger receptor‐class B type I (SR‐BI) and cluster of differentiation‐36 (CD36) which can be found in caveolae. The contribution of these receptors in human hepatic cell is however unknown. The HepG2 cell, a human hepatic parenchymal cell model, expresses these receptors and is characterized by a very low level of caveolin‐1. Our aim was to define the contribution of human CD36, SR‐BI, and caveolin‐1 in the metabolism of OxLDL in HepG2 cells and conversely the effects of OxLDL on the levels/localization of these receptors. By comparing mildly (M)‐ and heavily (H)‐OxLDL metabolism between control HepG2 cells and HepG2 cells overexpressing CD36, SR‐BI, or caveolin‐1, we found that (1) CD36 increases M‐ and H‐OxLDL‐protein uptake; (2) SR‐BI drives M‐OxLDL through a degradation pathway at the expense of the cholesterol ester (CE) selective uptake pathway; (3) caveolin‐1 increases M‐ and H‐OxLDL‐protein uptake and decreases CE selective uptake from M‐OxLDL. Also, incubation with M‐ or H‐OxLDL decreases the levels of SR‐BI and LDL‐receptor in control HepG2 cells which can be overcome by caveolin‐1 expression. In addition, OxLDL move CD36 from low to high buoyant density membrane fractions, as well as caveolin‐1 in cells overexpressing this protein. Thus, hepatic caveolin‐1 expression has significant effects on OxLDL metabolism and on lipoprotein receptor levels. J. Cell. Biochem. 108: 906–915, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号