首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently marketed genetically modified violet carnations cv. Moondust and Moonshadow (Dianthus caryophyllus) produce a delphinidin type anthocyanin that native carnations cannot produce and this was achieved by heterologous flavonoid 3',5'-hydroxylase gene expression. Since wild type carnations lack a flavonoid 3',5'-hydroxylase gene, they cannot produce delphinidin, and instead accumulate pelargonidin or cyanidin type anthocyanins, such as pelargonidin or cyanidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester. On the other hand, the anthocyanins in the transgenic flowers were revealed to be delphinidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester (main pigment), delphinidin 3,5-diglucoside-6"-malyl ester, and delphinidin 3,5-diglucoside-6",6"'- dimalyl ester. These are delphinidin derivatives analogous to the natural carnation anthocyanins. This observation indicates that carnation anthocyanin biosynthetic enzymes are versatile enough to modify delphinidin. Additionally, the petals contained flavonol and flavone glycosides. Three of them were identified by spectroscopic methods to be kaempferol 3-(6"'-rhamnosyl-2"'-glucosyl-glucoside), kaempferol 3-(6"'-rhamnosyl-2"'-(6-malyl-glucosyl)-glucoside), and apigenin 6-C-glucosyl-7-O-glucoside-6"'-malyl ester. Among these flavonoids, the apigenin derivative exhibited the strongest co-pigment effect. When two equivalents of the apigenin derivative were added to 1 mM of the main pigment (delphinidin 3,5-diglucoside-6"-O-4,6"'-O-1-cyclic-malyl diester) dissolved in pH 5.0 buffer solution, the lambda(max) shifted to a wavelength 28 nm longer. The vacuolar pH of the Moonshadow flower was estimated to be around 5.5 by measuring the pH of petal. We conclude that the following reasons account for the bluish hue of the transgenic carnation flowers: (1). accumulation of the delphinidin type anthocyanins as a result of flavonoid 3',5'-hydroxylase gene expression, (2). the presence of the flavone derivative strong co-pigment, and (3). an estimated relatively high vacuolar pH of 5.5.  相似文献   

2.
Acylated anthocyanins from the blue-violet flowers of Anemone coronaria   总被引:2,自引:0,他引:2  
Five polyacylated anthocyanins were isolated from blue-violet flowers of Anemone coronaria 'St. Brigid'. They were identified as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its demalonylated form, delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its cyanidin analog as well as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-(tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside].  相似文献   

3.
Two acylated anthocyanins were isolated from selected individuals of Petunia reitzii, and identified to be delphinidin 3-O-[6-O-(4-O-(4-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-tr ans-p-coumaroyl)-alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside]- 5-O-[beta-D-glucopyranoside] and delphinidin 3-O-[6-O-(4-O-(4-O-(beta-D-glucopyranosyl)-trans-p-coumaroyl)-alph a-L-rhamnopyranosyl)-beta-D-glucopyranoside]-5-O-[beta-D-glucopyranoside ]. Nine known anthocyanins were also identified.  相似文献   

4.
Ternatins are blue anthocyanins found in the petals of Clitoria ternata (butterfly pea). Among them, ternatin C5 (delphinidin 3-O-(6'-O-malonyl)-beta-glucoside-3',5'-di-O-beta-glucoside; 2) has the structure common to all the ternatins, which is characterized by its glucosylation pattern: a 3,3',5'-triglucosylated anthocyanidin. In the course of studying biosynthetic pathways of ternatins, the key enzymatic activities to produce ternatin C5 were discovered in a crude enzyme preparation from the petals of a blue petal line of C. ternatea. When this preparation was tested for activity against several delphinidin glycosides, delphinidin 3-O-(6'-O-malonyl)-beta-glucoside-3'-O-beta-glucoside (6), a postulated intermediate, was found in the reaction mixture, together with three known anthocyanins, which were spectroscopically structurally identified. As a result of structural identification, the following enzymatic activities were identified: UDP-glucose :delphinidin 3-O-(6'-O-malonyl)-beta-glucoside-3'-O-beta-glucoside 5'-O-glucosyltransferase (5'GT), UDP-glucose :delphinidin 3-O-(6'-O-malonyl)-beta-glucoside 3'-O-glucosyltransferase (3'GT), UDP-glucose :delphinidin 3-O-glucosyltransferase, and malonyl-CoA :delphinidin 3-O-beta-glucoside 6'-malonyltransferase. In a mauve petal line, which did not accumulate ternatins but delphinidin 3-O-(6'-O-malonyl)-beta-glucoside in its petal, there were neither 5'GT nor 3'GT activities. Thus, the early biosynthetic pathway of ternatins may be characterized by the stepwise transfer of two glucose residues to 3'- and 5'-position of delphinidin 3-O-(6'-O-malonyl)-beta-glucoside (1; Scheme) from UDP-glucose.  相似文献   

5.
Two triacylated and tetraglucosylated anthocyanins derived from cyanidin were isolated from the flowers of Ipomoea asarifolia and their structures elucidated using chemical, GC, MS and NMR methods (1H and 13C, TOCSY-1D, DQF-COSY, DIFFNOE and HMBC). These complex pigments were found to consist of cyanidin 3-O-[2-O-(6-O-E-caffeoyl-beta-D-glucopyranosyl)]-[6-O-[4-O-(6-O-E-3,5-dihydroxycinnamoyl-beta-D-glucopyranosyl)-E-caffeoyl]-beta-D-glucopyranosyl]-5-O-beta-D-glucopyranoside and cyanidin 3-O-[2-O-(6-O-E-p-coumaroyl-beta-D-glucopyranosyl)]-[6-O-[4-O-(6-O-E-p-coumaroyl-beta-D-glucopyranosyl)-E-caffeoyl]-beta-D-glucopyranosyl]-5-O-beta-D-glucopyranoside.  相似文献   

6.
The triacyl anthocyanins, Leschenaultia blue anthocyanins 1 and 2 (LBAs 1 and 2) were isolated from the blue flowers of Leschenaultia R. Br. cv. Violet Lena (Goodeniaceae), in which LBA 1 was present as a dominant pigment. The structure of LBA 1 was elucidated to be delphinidin 3-O-[6-O-(malonyl)-beta-D-glucopyranoside]-7-O-[6-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside] by application of chemical and spectroscopic methods. Since LAB 2 was isolated in small amount, its structure was tentatively assigned as either delphinidin 3-(malonylglucoside)-7-[(glucosyl-p-coumaroyl)-(glucosylcaffeoyl)-glucoside] or delphinidin 3-(malonyl-glucoside)-7-[(glucosyl-caffeoyl)(glucosyl-p-coumaroyl)-glucoside]. This is the first report of the occurrence of 7-polyacylated anthocyanins in the family of Goodeniaceae, although others have been found in the families of the Ranunculaceae, Campanulaceae, and Compositae. Moreover, delphinidin 3-glycoside-7-di-(glucosylcaffeoyl)-glucoside has been reported only in the flowers of Platycodon grandiflorum (Campanulaceae). From a chemotaxonomical viewpoint, the Goodeniaceae may be closely related to the Campanulaceae.  相似文献   

7.
Mori M  Kondo T  Toki K  Yoshida K 《Phytochemistry》2006,67(6):622-629
The dicaffeoyl anthocyanin, phacelianin, was isolated from blue petals of Phacelia campanularia. Its structure was determined to be 3-O-(6-O-(4'-O-(6-O-(4'-O-beta-d-glucopyranosyl-(E)-caffeoyl)-beta-d-glucopyranosyl)-(E)-caffeoyl)-beta-d-glucopyranosyl)-5-O-(6-O-malonyl-beta-d-glucopyranosyl)delphinidin. The CD of the blue petals of the phacelia showed a strong negative Cotton effect and that of the suspension of the colored protoplasts was the same, indicating that the chromophores of phacelianin may stack intermolecularly in an anti-clockwise stacking manner in the blue-colored vacuoles. In a weakly acidic aqueous solution, phacelianin displayed the same blue color and negative Cotton effect in CD as those of the petals. However, blue-black colored precipitates gradually formed without metal ions. A very small amount of Al(3+) or Fe(3+) may be required to stabilize the blue solution. Phacelianin may take both an inter- and intramolecular stacking form and shows the blue petal color by molecular association and the co-existence of a small amount of metal ions. We also isolated a major anthocyanin from the blue petals of Evolvulus pilosus and revised the structure identical to phacelianin.  相似文献   

8.
Nielsen AH  Olsen CE  Møller BL 《Phytochemistry》2005,66(24):2829-2835
Kalancho? blossfeldiana varieties with orange, pink, red and magenta flowers were found to contain 3,5-O-beta-D-diglucosides of pelargonidin, cyanidin, peonidin, delphinidin, petunidin and malvidin. Pink, red and magenta varieties contained relatively high amounts of quercetin based flavonols. Four distinct quercetin flavonols were identified, namely quercetin 3-O-beta-D-glucoside and three that were quercetin 3-O-alpha-L-rhamnoside based, with either glucose, xylose or arabinose attached to position 2 of the rhamnose. In addition, the presence of at least three kaempferol based diglycosides was suggested from LC-MS analyses. Orange varieties contained very low amounts of flavonol co-pigments and of delphinidin derivatives. The flower extracts of the varieties 'Diva' (magenta) and 'Molly' (red) had identical anthocyanin ratios but differed significantly in flavonol content. The magenta variety contained four times as much quercetin relative to anthocyanidin as the red variety. This difference was mainly due to a larger content of quercetin 3-O-(2'-O-beta-D-glucopyranosyl-alpha-L-rhamnopyranoside). Based on pigment and co-pigment analyses, approaches for molecular breeding towards blue flower colour are discussed.  相似文献   

9.
Three anthocyanins were isolated from the red flowers of chenille plant, Acalypha hispida Burm. (Euphorbiaceae) by a combination of chromatographic techniques. Their structures were elucidated mainly by homo- and heteronuclear nuclear magnetic resonance spectroscopy and electrospray mass spectrometry, and supported with complete assignments of 13C NMR resonances. The novel pigment, cyanidin 3-O-(2"-galloyl-6"-O-alpha-rhamnopyranosyl-beta-galactopyranoside) (5%), contains the disaccharide robinoside. The other anthocyanins were identified as cyanidin 3-O-(2"-galloyl-beta-galactopyranoside) (85%), and cyanidin 3-O-beta-galactopyranoside (5%). Anthocyanins acylated with gallic acid have previously been identified in species from the families Nymphaeaceae and Aceraceae, and tentatively in Abrus precatorius (Leguminosae).  相似文献   

10.
Three acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucosides (1-3) and one non-acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucoside (4) were isolated from the purple-violet or violet flowers and purple stems of Malcolmia maritima (L.) R. Br (the Cruciferae), and their structures were determined by chemical and spectroscopic methods. In the flowers of this plant, pigment 1 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-D-glucopyranoside]-5-O-[6-O-(malonyl)-(beta-D-glucopyranoside) as a major pigment, and a minor pigment 2 was determined to be the cis-p-coumaroyl isomer of pigment 1. In the stems, pigment 3 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-d-glucopyranoside]-5-O-(beta-D-glucopyranoside) as a major anthocyanin, and also a non-acylated anthocyanin, cyanidin 3-O-[2-O-(3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside) was determined to be a minor pigment (pigment 4). In this study, it was established that the acylation-enzymes of malonic acid has important roles for the acylation of 5-glucose residues of these anthocyanins in the flower-tissues of M. maritima; however, the similar enzymatic reactions seemed to be inhibited or lacking in the stem-tissues.  相似文献   

11.
To clarify the function of each caffeoyl residue in the diacylated anthocyanin gentiodelphin, a pigment from the blue flower of Gentiana makinoi, two mono-deacyl derivatives were compared for both color development and stability. In neutral solution, 3,5-di-O-beta-D-glucopyranosyl-3'-O-(6-O-caffeoyl-beta-D- glucopyranosyl)delphinidin was both bluer and more stable than 3,3'-di-O-beta-D-glucopyranosyl-5-O-(6-O-caffeoyl-beta-D- glucopyranosyl)delphinidin. Conformational analysis of each derivative under acidic conditions revealed only the 3'-O-caffeoylglucopyranosyl derivative to demonstrate intramolecular stacking. Additionally, the acyl residue in the B-ring contributed more to blue color development than that in the A-ring.  相似文献   

12.
Acylated anthocyanins from red radish (Raphanus sativus L.)   总被引:5,自引:0,他引:5  
Twelve acylated anthocyanins were isolated from the red radish (Raphanus sativus L.) and their structures were determined by spectroscopic analyses. Six of these were identified as pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-beta-D-glucopyranosyl]-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-caffeoyl-2-O-(6-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-p-coumaroyl-2-O-(6-(E)-caffeoyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-(6-(E)-caffeoyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-p-coumaroyl-2-O-(6-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), and pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-(2-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside).  相似文献   

13.
A new acylated flavone glucoside, 3'-hydroxyscutellarein 7-O-(6'-O-protocatechuoyl)-beta-glucopyranoside (1), and a new phenol glucoside, 3,5-dihydroxyphenethyl alcohol 3-O-beta-glucopyranoside (6) were isolated from Veronica thymoides subsp. pseudocinerea together with seven known flavone, phenol and lignan glycosides; 3'-hydroxyscutellarein 7-O-(6'-O-trans-feruloyl)-beta-glucopyranoside (2), 3'-hydroxy, 6-O-methylscutellarein 7-O-beta-glucopyranoside (3), luteolin 7-O-beta-glucopyranoside (4), isoscutellarein 7-O-(6'-O-acetyl)-beta-allopyranosyl (1' --> 2')-beta-glucopyranoside (5), 3,4-dihydroxyphenethyl alcohol 8-O-beta-glucopyranoside (7), benzyl alcohol 7-O-beta-xylopyranosyl (1" --> 2')-beta-glucopyranoside (8), and (+)-syringaresinol 4'-O-beta-glucopyranoside (9). Compounds 2, 3 and 7-9 were reported for the first time in the genus Veronica. The structures of the isolates were determined by means of spectroscopic (UV, IR, 1D and 2D NMR, HR ESI-MS) methods. Isolated compounds (1-7) exhibited potent radical scavenging activity against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical.  相似文献   

14.
The spacer-armed trisaccharide, Neu5Gc-alpha-(2-->3')-lactosamine 3-aminopropyl glycoside, was synthesized by regio- and stereoselective sialylation of the suitably protected triol acceptor, 3-trifluoroacetamidopropyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(6-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside, with the donor methyl [phenyl 5-acetoxyacetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha,beta-D-galacto-2-nonulopyranosid]onate. The donor was obtained, in turn, from methyl [phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha,beta-D-galacto-2-nonulopyranosid]onate by N-tert-butoxycarbonylation of the acetamido group followed by total N- and O-deacetylation, per-O-acetylation, subsequent Boc group removal, and N-acetoxyacetylation.  相似文献   

15.
Three acylated cyanidin 3-sambubioside-5-glucosides (1-3) were isolated from the violet-blue flowers of Orychophragonus violaceus, and their structures were determined by chemical and spectroscopic methods. Two of those acylated anthocyanins (1 and 3) were cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-acyl)-beta-D-glucopyranoside]-5-O-(6-O-malonyl-beta-D-glucopyranoside)s, in which the acyl groups were p-coumaric acid for 1, and sinapic acid for 3, respectively. The last anthocyanin 2 was cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-feruloyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside. In these flowers, the anthocyanins 2 and 3 were present as dominant pigments, and 1 was obtained in rather small amounts.  相似文献   

16.
锐尖山香圆叶中三萜类成分的研究   总被引:1,自引:0,他引:1  
从锐尖山香圆(Turpinia arguta (Lindl.) Seem.)叶中分离得到了11个三萜类化合物。通过光谱分析,分别鉴定其结构为熊果酸(1), 3β,6β,23-trihydroxy-12-oleanen-28-oic acid (2), 3β,6β,23-trihydroxyurs-12-en-28-oic acid (3), 3β,6β,19α,23-tetrahydroxyurs-12-en-28-oic acid (4), 1 α, 3β,23-trihydroxy-12-oleanen-28-oic acid (5), arjunglucoside II (6), rosamultin (7), 3β-O-β-D-glucopyranoylcincholic acid (8), cinchonaglycoside C (9), mussaendoside S (10) 和3β-O-β-D-glucopyranosyl quinovic acid 28-O-β-D-glucopyranosyl ester (11)。除化合物16,其它化合物均为首次从山香圆叶中分离得到。  相似文献   

17.
The crude malonyltransferase from the petals of Clitoria ternatea was characterized enzymatically to investigate its role on the biosynthetic pathways of anthocyanins and flavonol glycosides. In C. ternatea, a blue flower cultivars (DB) and mauve flower variety (WM) accumulate polyacylated anthocyanins (ternatins) and delphinidin 3-O-(6'-O-malonyl)-beta-glucoside which is one of the precursors of ternatins, respectively. Moreover, WM accumulates minor delphinidin glycosides - 3-O-beta-glucoside, 3-O-(2'-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(2'-O-alpha-rhamnosyl-6'-O-malonyl)-beta-glucoside of delphinidin. These glycosidic patterns for minor anthocyanins in WM are also found among the minor flavonol glycosides in all the varieties including a white flower variety (WW) although the major flavonol glycosides are 3-O-(2'-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(6'-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(2',6'-di-O-alpha-rhamnosyl)-beta-glucoside of kaempferol, quercetin, and myricetin. How do the enzymatic characteristics affect the variety of glycosidic patterns in the flavonoid glycoside biosynthesis among these varieties? While the enzyme from DB highly preferred delphinidin 3-O-beta-glucoside in the presence of malonyl-CoA, it also has a preference for other anthocyanidin 3-O-beta-glucosides. It could use flavonol 3-O-beta-glucosides in much lower specific activities than anthocyanins; however, it could not utilize 3-O-(2'-O-alpha-rhamnosyl)-beta-glucosides of anthocyanins and flavonols, and 3,3'-di- and 3,3',5'-tri-O-beta-glucoside of delphinidin - other possible precursors in ternatins biosynthesis. It highly preferred malonyl-CoA as an acyl donor in the presence of delphinidin 3-O-beta-glucoside. The crude enzymes prepared from WM and WW had the same enzymatic characteristics. These results suggested that 3-O-(2'-O-alpha-rhamnosyl-6'-O-malonyl)-beta-glucosides of flavonoids were synthesized via 3-O-(6'-O-malonyl)-beta-glucosides rather than via 3-O-(2'-O-alpha-rhamnosyl)-beta-glucosides, and that malonylation proceeded prior to glucosylation at the B-ring of delphinidin in the early biosynthetic steps towards ternatins. It seemed that the substrate specificities largely affected the difference in the accumulated amount of malonylated glycosides between anthocyanins and flavonols although they are not simply proportional to the accumulation ratio. This enzyme might join in the production of both malonylanthocyanins and flavonol malonylglycosides as a result of broad substrate specificities towards flavonoid 3-O-beta-glucosides.  相似文献   

18.
Hot pepper fruits (Capsicum annuum L.) var. Bronowicka Ostra have been studied with regard to content of flavonoids and other phenolics. Nine compounds were isolated from pericarp of pepper fruits by preparative HPLC. Their structures were identified by chromatographic (analytical HPLC) and spectroscopic (UV, NMR) techniques. Two of the identified compounds, trans-p-ferulylalcohol-4-O-(6-(2-methyl-3-hydroxypropionyl) glucopyranoside and luteolin-7-O-(2-apiofuranosyl-4-glucopyranosyl-6-malonyl)-glucopyranoside were found for the first time in the plant kingdom. Additionally compounds: trans-p-feruloyl-beta-D-glucopyranoside, trans-p-sinapoyl-beta- D-glucopyranoside, quercetin 3-O-alpha-L-rhamnopyranoside-7-O-beta-D-glucopyranoside, luteolin 6-C-beta-D-glucopyranoside-8-C-alpha-L-arabinopyranoside, apigenin 6-C-beta-D-glucopyranoside-8-C-alpha-L-arabinopyranoside and luteolin 7-O-[2-(beta-D-apiofuranosyl)-beta-D-glucopyranoside] were found for the first time in pepper fruit Capsicum annuum L.  相似文献   

19.
Two new cycloartane-type glycosides oleifoliosides A (1) and B (2) were isolated from the lower stem parts of Astragalus oleifolius. Their structures were identified as 3-O-[beta-xylopyranosyl-(1 --> 2)-alpha-arabinopyranosyl]-6-O-beta-xylopyranosyl-3beta,6alpha,16beta,24(S),25-pentahydroxycycloartane and 3-O-[beta-xylopyranosyl-(1 --> 2)-alpha-arabinopyranosyl]-6-O-beta-glucopyranosyl-3beta,6alpha,16beta,24(S),25-pentahydroxycycloartane, respectively, by means of spectroscopic methods (IR, 1D and 2D NMR, ESI-MS). Three known cycloartane glycosides cyclocanthoside E (3), astragaloside II (4) and astragaloside IV (5) were also isolated and characterized. All five compounds were evaluated for in vitro trypanocidal, leishmanicidal and antiplasmodial activities as well as their cytotoxic potential on primary mammalian (L6) cells. Except for the compound 5, all compounds showed notable growth inhibitory activity against Leishmania donovani with IC50 values ranging from 13.2 to 21.3 microg/ml. Only weak activity against Trypanosoma brucei rhodesiense was observed with the known compounds astragaloside II (4, IC50 66.6 microg/ml) and cyclocanthoside E (3, IC50 85.2 microg/ml), while all compounds were inactive against Trypanosoma cruzi and Plasmodium falciparum. None of the compounds were toxic to mammalian cells (IC50's > 90 microg/ml). This is the first report of leishmanicidal and trypanocidal activity of cycloartane-type triterpene glycosides.  相似文献   

20.
Acylated anthocyanins from leaves of Oxalis triangularis   总被引:2,自引:0,他引:2  
The novel anthocyanins, malvidin 3-O-(6-O-(4-O-malonyl-alpha-rhamnopyranosyl)-beta-glucopyranoside)-5-O-beta-glucopyranoside (2), malvidin 3-O-(6-O-alpha-rhamnopyranosyl-beta-glucopyranoside)-5-O-(6-O-malonyl-beta-glucopyranoside) (3), malvidin 3-O-(6-O-(4-O-malonyl-alpha-rhamnopyranosyl)-beta-glucopyranoside)-5-O-(6-O-malonyl-beta-glucopyranoside) (4), malvidin 3-O-(6-O-(4-O-malonyl-alpha-rhamnopyranosyl)-beta-glucopyranoside) (5) and malvidin 3-O-(6-O-(Z)-p-coumaroyl-beta-glucopyranoside)-5-O-beta-glucopyranoside (6), in addition to the 3-O-(6-O-alpha-rhamnopyranosyl-beta-glucopyranoside)-5-O-beta-glucopyranoside (1) and the 3-O-(6-O-(E)-p-coumaroyl-beta-glucopyranoside)-5-O-beta-glucopyranoside (7) of malvidin have been isolated from purple leaves of Oxalis triangularis A. St.-Hil. In pigments 2, 4 and 5 a malonyl unit is linked to the rhamnose 4-position, which has not been reported previously for any anthocyanin before. The identifications were mainly based on 2D NMR spectroscopy and electrospray MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号