首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
HIV-1 develops resistance to protease inhibitors predominantly by selecting mutations in the protease gene. Studies of resistant mutants of HIV-1 protease with single amino acid substitutions have shown a range of independent effects on specificity, inhibition, and stability. Four double mutants, K45I/L90M, K45I/V82S, D30N/V82S, and N88D/L90M were selected for analysis on the basis of observations of increased or decreased stability or enzymatic activity for the respective single mutants. The double mutants were assayed for catalysis, inhibition, and stability. Crystal structures were analyzed for the double mutants at resolutions of 2.2-1.2 A to determine the associated molecular changes. Sequence-dependent changes in protease-inhibitor interactions were observed in the crystal structures. Mutations D30N, K45I, and V82S showed altered interactions with inhibitor residues at P2/P2', P3/P3'/P4/P4', and P1/P1', respectively. One of the conformations of Met90 in K45I/L90M has an unfavorably close contact with the carbonyl oxygen of Asp25, as observed previously in the L90M single mutant. The observed catalytic efficiency and inhibition for the double mutants depended on the specific substrate or inhibitor. In particular, large variation in cleavage of p6(pol)-PR substrate was observed, which is likely to result in defects in the maturation of the protease from the Gag-Pol precursor and hence viral replication. Three of the double mutants showed values for stability that were intermediate between the values observed for the respective single mutants. D30N/V82S mutant showed lower stability than either of the two individual mutations, which is possibly due to concerted changes in the central P2-P2' and S2-S2' sites. The complex effects of combining mutations are discussed.  相似文献   

2.
    
Reva B  Finkelstein A  Topiol S 《Proteins》2002,47(2):180-193
We present a new method for more accurate modeling of protein structure, called threading with chemostructural restrictions. This method addresses those cases in which a target sequence has only remote homologues of known structure for which sequence comparison methods cannot provide accurate alignments. Although remote homologues cannot provide an accurate model for the whole chain, they can be used in constructing practically useful models for the most conserved-and often the most interesting-part of the structure. For many proteins of interest, one can suggest certain chemostructural patterns for the native structure based on the available information on the structural superfamily of the protein, the type of activity, the sequence location of the functionally significant residues, and other factors. We use such patterns to restrict (1) a number of possible templates, and (2) a number of allowed chain conformations on a template. The latter restrictions are imposed in the form of additional template potentials (including terms acting as sequence anchors) that act on certain residues. This approach is tested on remote homologues of alpha/beta-hydrolases that have significant structural similarity in the positions of their catalytic triads. The study shows that, in spite of significant deviations between the model and the native structures, the surroundings of the catalytic triad (positions of C(alpha) atoms of 20-30 nearby residues) can be reproduced with accuracy of 2-3 A. We then apply the approach to predict the structure of dipeptidylpeptidase IV (DPP-IV). Using experimentally available data identifying the catalytic triad residues of DPP-IV (David et al., J Biol Chem 1993;268:17247-17252); we predict a model structure of the catalytic domain of DPP-IV based on the 3D fold of prolyl oligopeptidase (Fulop et al., Cell 1998;94:161-170) and use this structure for modeling the interaction of DPP-IV with inhibitor.  相似文献   

3.
Flöck D  Helms V 《Proteins》2002,47(1):75-85
Electron transferring protein complexes form only transiently and the crystal structures of electron transfer protein--protein complexes involving cytochrome c could so far be determined only for the pairs of yeast cytochrome c peroxidase (CcP) with iso-1-cytochrome c (iso-1-cyt c) and with horse heart cytochrome c (cyt c). This article presents models from computational docking for complexes of cytochrome c oxidase (COX) from Paracoccus denitrificans with horse heart cytochrome c, and with its physiological counterpart cytochrome c552 (c552). Initial docking is performed with the FTDOCK program, which permits an exhaustive search of translational and rotational space. A filtering procedure is then applied to reduce the number of complexes to a manageable number. In a final step of structural and energetic refinement, the complexes are optimized by rigid-body energy minimization with the molecular mechanics package CHARMM. This methodology was first tested on the CcP:iso-1-cyt c complex, in which the complex with the lowest CHARMM energy has an RMSD from the crystal structure of only 1.8 A (C(alpha) carbon atoms). Notably, the crystal conformation has an even lower energy. The same procedure was then applied to COX:cyt c and COX:c552. The lowest-energy COX:cyt c complex is very similar to a docking model previously described for the complex of bovine cytochrome c oxidase with horse heart cytochrome c. For the COX:c552 complex, cytochrome c552 is found in two different orientations, depending on whether it is docked against COX from a two-subunit or from a four-subunit crystal structure, respectively. Both conformations are discussed critically in the light of the available experimental data.  相似文献   

4.
    
Oxysterol-binding protein (OSBP)-related protein Kes1/ Osh4p is implicated in nonvesicular sterol transfer between membranes in Saccharomyces cerevisiae. However, we found that Osh4p associated with exocytic vesicles that move from the mother cell into the bud, where Osh4p facilitated vesicle docking by the exocyst tethering complex at sites of polarized growth on the plasma membrane. Osh4p formed complexes with the small GTPases Cdc42p, Rho1p and Sec4p, and the exocyst complex subunit Sec6p, which was also required for Osh4p association with vesicles. Although Osh4p directly affected polarized exocytosis, its role in sterol trafficking was less clear. Contrary to what is predicted for a sterol-transfer protein, inhibition of sterol binding by the Osh4p Y97F mutation did not cause its inactivation. Rather, OSH4(Y97F) is a gain-of-function mutation that causes dominant lethality. We propose that in response to sterol binding and release Osh4p promotes efficient exocytosis through the co-ordinate regulation of Sac1p, a phosphoinositide 4-phosphate (PI4P) phosphatase, and the exocyst complex. These results support a model in which Osh4p acts as a sterol-dependent regulator of polarized vesicle transport, as opposed to being a sterol-transfer protein.  相似文献   

5.
    
We use LINUS (the \"Local Independently Nucleated Units of Structure\"), a procedure developed by Srinivasan and Rose, to provide a physical interpretation of and predict the secondary structures of proteins. The secondary structure type at a given site is identified by the largest conformational bias during short simulations. We examine the rate of successful prediction as a function of temperature and the interaction window. At high temperatures, there is a large propensity for the establishment of beta-strands whereas alpha-helices appear only when the temperature is lower than a certain threshold value. It is found that there exists an optimal temperature at which the correct secondary structures are predicted most accurately. We find that this temperature is close to the peak temperature of the specific heat. Changing the interaction window or carrying out longer simulations approaching equilibrium lead to little change in the optimal success rate. Our findings are in accord with the observation by Srinivasan and Rose that the secondary structures are mainly determined by local interactions and appear in the early stage of folding.  相似文献   

6.
    
Pantano S  Alber F  Lamba D  Carloni P 《Proteins》2002,47(1):62-68
We present an ab initio molecular dynamics study of the complex between acyl carrier protein reductase InhA from M. tuberculosis and isonicotinic acid hydrazide-NADH. We focus on wild-type (WT) InhA and a mutant causing drug resistance (S94A) for which structural information is available (Rozwarski et al., 1998;279:98--102; Dessen et al., 1995;267:1638--1641). Our calculations suggest that the water-mediated H-bond interactions between Ser94 side chain and NADH, present in WT InhA X-ray structure, can be lost during the dynamics. This conformational change is accompanied by a structural rearrangement of Gly14. The calculated structure of WT is rather similar to the X-ray structure of the S94A mutant in terms of geometrical parameters and chemical bonding. Further evidence for the mobility of Ser94 is provided by a 1-ns-long classical molecular dynamics on the entire protein. The previously unrecognized high mobility of Ser94 can provide a rationale of the small change in free binding energies on passing from WT to S94A InhA.  相似文献   

7.
  总被引:1,自引:0,他引:1  
Proteins are targeted to the peroxisome matrix via processes that are mechanistically distinct from those used by other organelles. Protein entry into peroxisomes requires peroxin (PEX) proteins, including early-acting receptor (e.g. PEX5) and docking peroxins (e.g. PEX13 and PEX14) and late-acting PEX5-recycling peroxins (e.g. PEX4 and PEX6). We examined genetic interactions among Arabidopsis peroxin mutants and found that the weak pex13-1 allele had deleterious effects when combined with pex5-1 and pex14-2, which are defective in early-acting peroxins, as shown by reduced matrix protein import and enhanced physiological defects. In contrast, combining pex13-1 with pex4-1 or pex6-1, which are defective in late-acting peroxins, unexpectedly ameliorated mutant growth defects. Matrix protein import remained impaired in pex4-1 pex13-1 and pex6-1 pex13-1, suggesting that the partial suppression of pex4-1 and pex6-1 physiological defects by a weak pex13 allele may result from restoring the balance between import and export of PEX5 or other proteins that are retrotranslocated from the peroxisome with the assistance of PEX4 and PEX6. Our results suggest that symptoms caused by pex mutants defective in late-acting peroxins may result not only from defects in matrix protein import but also from inefficient removal of PEX5 from the peroxisomal membrane following cargo delivery.  相似文献   

8.
    
Numb regulates endocytosis in many metazoans, but the mechanism by which it functions is not completely understood. Here we report that the Caenorhabditis elegans Numb ortholog, NUM-1A, a regulator of endocytic recycling, binds the C isoform of transbilayer amphipath transporter-1 (TAT-1), a P4 family adenosine triphosphatase and putative aminophospholipid translocase that is required for proper endocytic trafficking. We demonstrate that TAT-1 is differentially spliced during development and that TAT-1C-specific splicing occurs in the intestine where NUM-1A is known to function. NUM-1A and TAT-1C colocalize in vivo. We have mapped the binding site to an NXXF motif in TAT-1C. This motif is not required for TAT-1C function but is required for NUM-1A's ability to inhibit recycling. We demonstrate that num-1A and tat-1 defects are both suppressed by the loss of the activity of PSSY-1, a phosphatidylserine (PS) synthase. PS is mislocalized in intestinal cells with defects in tat-1 or num-1A function. We propose that NUM-1A inhibits recycling by inhibiting TAT-1C's ability to translocate PS across the membranes of recycling endosomes.  相似文献   

9.
    
Among the EF-hand Ca(2+)-binding proteins, parvalbumin (PV) and calbindin D9k (CaB) have the function of Ca(2+) buffers. They evolved from an ancestor protein through two phylogenetic pathways, keeping one pair of EF-hands. They differ by the extra helix-loop-helix (AB domain) found in PV and by the linker between the binding sites. To investigate whether the deletion of AB in PV restores a CaB-like structure, we prepared and solved the structure of the truncated rat PV (PVratDelta37) by X-ray and NMR. PVratDelta37 keeps the PV fold, but is more compact, having a well-structured linker, which differs remarkably from CaB. PvratDelta37 has no stable apo-form, has lower affinity for Ca(2+) than full-length PV, and does not bind Mg(2+), in contrast to CaB. Structural differences of the hydrophobic core are partially responsible for lowering the calcium-binding affinity of the truncated protein. It can be concluded that the AB domain, like the linker of CaB, plays a role in structural stabilization. The AB domain of PV protects the hydrophobic core, and is required to maintain high affinity for divalent cation binding. Therefore, the AB domain possibly modulates PV buffer function.  相似文献   

10.
    
The breast cancer associated gene 1 (BRCA1)‐A protein complex assembles at DNA damage‐induced nuclear foci to facilitate repair of double‐stranded breaks. Here, we describe the first systematic comparison of the dynamics, copy number and organization of its core components at foci. We show that the protein pools at individual foci generally comprise a small immobile fraction (~20%) and larger mobile fraction (~80%), which together occupy the same focal space but exist at different densities. In the mobile fraction, Abraxas (CCDC98) and the heterodimer BARD1–BRCA1 share similar rates of dynamic exchange (complete turnover in ~500 seconds). In contrast, RAP80, which is required for initial foci assembly, was more dynamic with 25‐fold faster turnover at mature foci. In addition, Abraxas, BARD1, BRCA1 and Merit40 (NBA1) were stably retained in the immobile fraction of foci under conditions causing loss of BRCC36 and RAP80, suggesting a shift to RAP80‐independent localization after foci formation. These results, combined with our finding that RAP80 (~1200 copies per focus) is twofold more abundant than Abraxas/BARD1/BRCA1 at foci, suggest new models defining the dynamic organization of BRCA1‐A complex at mature foci, wherein the unusually fast turnover of RAP80 may contribute to its regulation of BRCA1‐dependent DNA repair.  相似文献   

11.
12.
    
Madrid M  Lukin JA  Madura JD  Ding J  Arnold E 《Proteins》2001,45(3):176-182
  相似文献   

13.
    
Streptomyces griseus aminopeptidase (SGAP) is a double-zinc exopeptidase with a high preference toward large hydrophobic amino-terminus residues. It is a monomer of a relatively low molecular weight (30 kDa), it is heat stable, it displays a high and efficient catalytic turnover, and its activity is modulated by calcium ions. The small size, high activity, and heat stability make SGAP a very attractive enzyme for various biotechnological applications, among which is the processing of recombinant DNA proteins and fusion protein products. Several free amino acids, such as phenylalanine, leucine, and methionine, were found to act as weak inhibitors of SGAP and hence were chosen for structural studies. These inhibitors can potentially be regarded as product analogs because one of the products obtained in a normal enzymatic reaction is the cleaved amino terminal amino acid of the substrate. The current study includes the X-ray crystallographic analysis of the SGAP complexes with methionine (1.53 A resolution), leucine (1.70 A resolution), and phenylalanine (1.80 A resolution). These three high-resolution structures have been used to fully characterize the SGAP active site and to identify some of the functional groups of the enzyme that are involved in enzyme-substrate and enzyme-product interactions. A unique binding site for the terminal amine group of the substrate (including the side chains of Glu131 and Asp160, as well as the carbonyl group of Arg202) is indicated to play an important role in the binding and orientation of both the substrate and the product of the catalytic reaction. These studies also suggest that Glu131 and Tyr246 are directly involved in the catalytic mechanism of the enzyme. Both of these residues seem to be important for substrate binding and orientation, as well as the stabilization of the tetrahedral transition state of the enzyme-substrate complex. Glu131 is specifically suggested to function as a general base during catalysis by promoting the nucleophilic attack of the zinc-bound water/hydroxide on the substrate carbonyl carbon. The structures of the three SGAP complexes are compared with recent structures of three related aminopeptidases: Aeromonas proteolytica aminopeptidase (AAP), leucine aminopeptidase (LAP), and methionine aminopeptidase (MAP) and their complexes with corresponding inhibitors and analogs. These structural results have been used for the simulation of several species along the reaction coordinate and for the suggestion of a general scheme for the proteolytic reaction catalyzed by SGAP.  相似文献   

14.
    
One of the biological functions of lactoferrin is the modulation of the host defense systems, including cytokine production and immune responses. We have tested the effect of lactoferrin on the productions of tumor necrosis factor‐α and nitric oxide in some cells. Lactoferrin itself did not induce either tumor necrosis factor‐α production or nitric oxide production, but lipopolysaccharide‐stimulated tumor necrosis factor‐α production of macrophages and monocytes were inhibited by lactoferrin treatment combined with stimulant. The induction of nitric oxide synthesis in stimulated macrophages and vascular smooth muscle cells was not affected by the lactoferrin. J. Cell. Biochem. 76:30–36, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
    
Genetic analysis has strongly implicated human FHIT (Fragile Histidine Triad) as a tumor suppressor gene, being mutated in a large proportion of early‐stage cancers. The functions of the FHIT protein have, however, remained elusive. Here, we investigated aph1+, the fission yeast homolog of FHIT, for functions related to checkpoint control and oxidative metabolism. In sublethal concentrations of DNA damaging agents, aph1Δ mutants grew with a substantially shorter lag phase. In aph1Δ mutants carrying a hypomorphic allele of cds1 (the fission yeast homolog of Chk2), in addition, increased chromosome fragmentation and missegregation were found. We also found that under hypoxia or impaired electron transport function, the Aph1 protein level was strongly depressed. Previously, FHIT has been linked to regulation of the human 9‐1‐1 checkpoint complex constituted by Hus1, Rad1, and Rad9. In Schizosaccharomyces pombe, the levels of all three 9‐1‐1 proteins are all downregulated by hypoxia in similarity with Aph1. Moreover, deletion of the aph1+ gene reduced the Rad1 protein level, indicating a direct relationship between these two proteins. We conclude that the fission yeast FHIT homolog has a role in modulating DNA damage checkpoint function, possibly through an effect on the 9‐1‐1 complex, and that this effect may be critical under conditions of limiting oxidative metabolism and reoxygenation.  相似文献   

16.
The serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 (SERPINE1) gene encodes plasminogen activator inhibitor type 1 (PAI), which is the major physiological inhibitor of tissue‐type and urokinase‐type plasminogen activators and plays a role in obesity and insulin resistance in women but not in men. We detected SNP FN396538:g.566G>A in intron 3 and a non‐synonymous substitution NM_213910:c.612A>G in exon 3 (p.Ile159Val) and mapped the gene to position 8.4 cM on the linkage map of chromosome 3. Association analyses were conducted on the 12th–15th generation of the Meishan × Large White (MLW) cross (n = 565), with records for weight at the end of test, lifetime daily gain, test time daily gain, loin depth and backfat depth, as well as on a European wild boar × Meishan (W × M) F2 population (n = 333) with 47 traits recorded for carcass composition and meat quality. Analyses performed across the entire MLW population or in the male animals did not show any trait significantly associated with the loci studied. In female animals, both SNPs were associated with loin depth at nominal P < 0.05 with adjusted P values equal to 0.051 (g.566) and 0.057 (c.612). Differences between homozygotes were up to 0.65 SD. In the entire W × M population and female animals, SERPINE1 was significantly associated at adjusted P < 0.05 in descending order with muscling, growth and fat accretion and in male animals with meat quality (R‐value). In the studied populations, allele effects were in opposite directions, which implies that the SNPs are markers that are in linkage disequilibrium with a causative mutation.  相似文献   

17.
    
Drug resistance to HIV-1 protease involves the accumulation of multiple mutations in the protein. We investigate the role of these mutations by using molecular dynamics simulations that exploit the influence of the native-state topology in the folding process. Our calculations show that sites contributing to phenotypic resistance of FDA-approved drugs are among the most sensitive positions for the stability of partially folded states and should play a relevant role in the folding process. Furthermore, associations between amino acid sites mutating under drug treatment are shown to be statistically correlated. The striking correlation between clinical data and our calculations suggest a novel approach to the design of drugs tailored to bind regions crucial not only for protein function, but for folding as well.  相似文献   

18.
19.
    
Pullulanase is a debranching enzyme that specifically hydrolyzes the α‐1,6 glycosidic linkage of α‐glucans, and has wide industrial applications. Here, we report structural and functional studies of a new thermostable pullulanase from Anoxybacillus sp. LM18‐11 (PulA). Based on the hydrolysis products, PulA was classified as a type I pullulanase. It showed maximum activity at 60°C and pH 6.0. Kinetic study showed that the specific activity and Km for pullulan of PulA are 750 U mg?1 and 16.4 μmol L?1, respectively. PulA has a half‐life of 48 h at 60°C. The remarkable thermostability makes PulA valuable for industrial usage. To further investigate the mechanism of the enzyme, we solved the crystal structures of PulA and its complexes with maltotriose and maltotetraose at 1.75–2.22 Å resolution. The PulA structure comprises four domains (N1, N2, A, and C). A is the catalytic domain, in which three conserved catalytic residues were identified (D413, E442, and D526). Two molecules of oligosaccharides were seen in the catalytic A domain in a parallel binding mode. Interestingly, another two oligosaccharides molecules were found between the N1 domain and the loop between the third β‐strand and the third α‐helix in the A domain. Based on sequence alignment and the ligand binding pattern, the N1 domain is identified as a new type of carbohydrate‐binding motif and classified to the CBM68 family. The structure solved here is the first structure of pullulanase which has carbohydrate bound to the N1 domain. Proteins 2014; 82:1685–1693. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
    
The active site of heme catalases is buried deep inside a structurally highly conserved homotetramer. Channels leading to the active site have been identified as potential routes for substrate flow and product release, although evidence in support of this model is limited. To investigate further the role of protein structure and molecular channels in catalysis, the crystal structures of four active site variants of catalase HPII from Escherichia coli (His128Ala, His128Asn, Asn201Ala, and Asn201His) have been determined at approximately 2.0-A resolution. The solvent organization shows major rearrangements with respect to native HPII, not only in the vicinity of the replaced residues but also in the main molecular channel leading to the heme distal pocket. In the two inactive His128 variants, continuous chains of hydrogen bonded water molecules extend from the molecular surface to the heme distal pocket filling the main channel. The differences in continuity of solvent molecules between the native and variant structures illustrate how sensitive the solvent matrix is to subtle changes in structure. It is hypothesized that the slightly larger H(2)O(2) passing through the channel of the native enzyme will promote the formation of a continuous chain of solvent and peroxide. The structure of the His128Asn variant complexed with hydrogen peroxide has also been determined at 2.3-A resolution, revealing the existence of hydrogen peroxide binding sites both in the heme distal pocket and in the main channel. Unexpectedly, the largest changes in protein structure resulting from peroxide binding are clustered on the heme proximal side and mainly involve residues in only two subunits, leading to a departure from the 222-point group symmetry of the native enzyme. An active role for channels in the selective flow of substrates through the catalase molecule is proposed as an integral feature of the catalytic mechanism. The Asn201His variant of HPII was found to contain unoxidized heme b in combination with the proximal side His-Tyr bond suggesting that the mechanistic pathways of the two reactions can be uncoupled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号