首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive 'retinal stem cells' ('RSCs') can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, 'RSCs', by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, 'RSCs' can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that 'RSCs' expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina.  相似文献   

2.
We have shown that embryonic retina contains progenitors which display stem cell properties in vitro. These cells are proliferative and in addition to expressing the neuroectodermal marker, nestin, are multipotential. These properties and the fact that the putative stem cells can differentiate as photoreceptors when exposed to conducive environment identify them as a viable transplantation reagents to address degenerative retinal diseases. Here we report the survival and differentiation of cultured retinal progenitors upon subretinal transplantation. The retinal progenitor grafts, either as neural spheres or in the form of dissociated cells, survived without disrupting the morphology and laminar organization of the host retina. They did not form rosettes, the morphological barrier to the reconstruction of the normal anatomy of the retina. In addition, transplanted progenitors expressed photoreceptor-specific markers, suggesting that progenitors have the potential to differentiate as photoreceptors. Our observations suggest that cultured retinal progenitors can be a viable reagents for therapeutic transplantation.  相似文献   

3.
The Steel mutation is a non-cell-autonomous defect in mice that affects the development of several stem cell populations, including germ cells, hematopoietic cells, and neural crest-derived pigment cells. To characterize the environmental lesion caused by the Steel mutation, we have compared the ability of normal and mutant extracellular matrix material to support the differentiation of normal mouse neural crest cells in vitro. Extracellular matrix deposited by cultured skin cells isolated from normal fetuses enhanced melanogenesis by crest cells over that observed on plastic substrata. In contrast, matrix material produced by Steel-Dickie (Sld) fetal skin cells failed to enhance melanogenesis. Adrenergic differentiation by neural crest-derived cells was promoted equally by both normal and mutant extracellular matrix compared to control substrata. We conclude that the environmental defect in mutant embryos selectively affects a melanogenic subpopulation of neural crest cells and resides, at least in part, in the extracellular matrix.  相似文献   

4.
5.
Embryonic stem cells and retinal repair   总被引:1,自引:0,他引:1  
In this review we examine the potential of embryonic stem cells (ESCs) for use in the treatment of retinal diseases involving photoreceptors and retinal pigment epithelium (RPE). We outline the ontogenesis of target retinal cell types (RPE, rods and cones) and discuss how an understanding of developmental processes can inform our manipulation of ESCs in vitro. Due to their potential for cellular therapy, special emphasis is placed upon the derivation and culture of human embryonic stem cells (HESCs) and their differentiation towards a retinal phenotype. In terms of achieving this goal, we suggest that much of the success to date reflects permissive in vitro environments provided by established protocols for HESC derivation, propagation and neural differentiation. In addition, we summarise key factors that may be important for enhancing efficiency of retinal cell-type derivation from HESCs. The retina is an amenable component of the central nervous system (CNS) and as such, diseases of this structure provide a realistic target for the application of HESC-derived cellular therapy to the CNS. In order to further this goal, the second component of our review focuses on the cellular and molecular cues within retinal environments that may influence the survival and behaviour of transplanted cells. Our analysis considers both the potential barriers to transplant integration in the retina itself together with the remodelling in host visual centres that is known to accompany retinal dystrophy.  相似文献   

6.
Investigation of the developmental potential of immature tissues is important for novel approaches to human regenerative medicine. Development of the fetal neural retina has therefore been investigated in two experimental systems. Retinas were microsurgically isolated from 20-days-old rat fetuses and cultivated in vitro for 12 days or transplanted in vivo under the kidney capsule of adult males for as long as 6 months. Shedding of the photoreceptor outer segment which is a process occurring at the terminal stage of photoreceptor differentiation was observed in culture by transmission electron microscopy (TEM). In transplants, no photoreceptors were found although markers of terminal neural and glial differentiation (e,g. synaptophysin, chromogranin and glial fibrilary acidic protein--GFAP) along with the molecules involved in the process of differentiation (guidance molecule semaphorin IIIA and chondroitin sulfate proteoglycan) were expressed. Semaphorin was differentially expressed being absent from older transplants. Proliferating cell nuclear antigen and nestin (marker of undifferentiated neural cells) were still weakly expressed even in six-months-old transplants. We could conclude that in both our experimental systems fetal neural retina proceeded to differentiate further on. However, even in long-term ectopic transplants a small population of cells still retained the potential for proliferation and has not yet reached the stage of terminal differentiation.  相似文献   

7.
Through mechanisms still unknown, the apparently homogeneous neuroepithelium of the embryonic optic cup differentiates into such divergent cell types as photoreceptors, glia, and various subsets of neurons. Questions that still remain unanswered in this field include the timing and mechanism of action of the "instructive" events directing each neuroepithelial cell to undergo the sequence of phenotypic changes necessary to develop into a specific retinal cell type. This laboratory is investigating some of these questions using cultures in which dissociated neural retina cells, obtained before the onset of overt photoreceptor differentiation, develop at low density in the absence of glia and pigment epithelium. The cultures initially are a morphologically homogeneous population of process-free, round cells. Some cells retain this morphology throughout the first week in vitro, while others develop either as photoreceptors or as multipolar neurons. Photoreceptors elongate and become very asymmetric as they do in vivo, with characteristic compartments orderly arranged along their longitudinal axis (an outer segment-like process, inner segment, cell body, and a characteristically short, single neurite). Cell polarization can also be observed in the distribution of opsin immunoreactive materials and some cytoskeletal elements. Thus, certain precursor cells present in the embryonic retina seem to be programmed to differentiate into photoreceptors even when developing in the absence of contacts with other retinal cells. However, interactions with other constituents of the retina/pigment epithelium complex are probably necessary to ensure final photoreceptor maturation, including further growth of the opsin-rich outer segment process.  相似文献   

8.
Monoclonal antibodies have served to characterize neurotactin, a novel Drosophila protein for which a role in cell adhesion is postulated. Neurotactin is a transmembrane protein, as indicated by epitope mapping and amino acid sequence. Similarly to other cell adhesion molecules, neurotactin accumulates in parts of the membrane where neurotactin-expressing cells contact each other. The protein is only detected during cell proliferation and differentiation, and it is found mainly in neural tissue and also in mesoderm and imaginal discs. Neurotactin has a large cytoplasmic domain rich in charged residues and an extracellular domain similar to cholinesterase that lacks the active site serine required for esterase activity. The extracellular domain also contains three copies of the tripeptide leucine-arginine-glutamate, a motif that forms the primary sequence of the adhesive site of vertebrate s-laminin.  相似文献   

9.
The three major classes of neurons which comprise the primary visual pathway in retina are glutamatergic. These cells are generated in two separate developmental stages, with one subclass of photoreceptors (cones) and ganglion cells generated before birth; and the other subclass of photoreceptors (rods) and bipolar cells generated during the first week after birth. Gas chromatography/mass spectroscopy analysis coupled with a new method for collecting small samples of extracellular fluids from retina were used to determine the levels of endogenous glutamate present during differentiation and synaptogenesis of these different cell types. As expected the total retinal content of glutamate increased during the postnatal period in synchrony with the generation and maturation of glutamatergic cells. However, a significant proportion of the endogenous pool was found extracellularly at birth. Intracellular glutamate is localized within cell bodies and growing processes of cones and ganglion cells at this time but few glutamatergic synapses are present. The extracellular concentration of glutamate actually declined during the most active period of synaptogenesis, reaching very low levels in the adult. The high concentrations of extracellular glutamate in neonatal retina could play an important role in a variety of developmental events such as dendritic pruning, programmed cell death and neurite sprouting. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

10.
11.
The retinal pigment epithelium (RPE) is unique among epithelia in that its apical surface does not face a lumen, but, instead, is specialized for interaction with the neural retina. The molecules involved in the interaction of the RPE with the neural retina are not known. We show here that the neural cell adhesion molecule (N-CAM) is found both on the apical surface of RPE in situ and on the outer segments of photoreceptors, fulfilling an important requisite for an adhesion role between both structures. Strikingly, culture of RPE results in rapid redistribution of N-CAM to the basolateral surface. This is not due to an isoform shift, since the N-CAM expressed by cultured cells (140 kD) is the same as that expressed by RPE in vivo. Rather, the reversed polarity of N-CAM appears to result from the disruption of the contact between the RPE and the photoreceptors of the neural retina. We suggest that N-CAM in RPE and photoreceptors participate in these interactions.  相似文献   

12.
13.
A molecular view of vertebrate retinal development   总被引:4,自引:0,他引:4  
  相似文献   

14.
Between the pigment epithelium and the outer limiting membrane of the retina is an extracellular compartment filled with the interphotoreceptor matrix (IPM). A prominent component of the IPM is a glycoprotein known as interstitial retinol-binding protein (IRBP). Using in vitro techniques, we compared the ability of the cells that border this compartment to internalize colloidal gold (CG) coated with either IRBP or ovalbumin, a glycoprotein not found in the IPM. Neither IRBP-CG nor ovalbumin-CG was internalized by the Muller's cells. Both rod and cone photoreceptors take up IRBP-CG, which is observed in small vesicles and multivesicular bodies. Neither photoreceptor type takes up ovalbumin-CG. Acid phosphatase cytochemistry indicates that acid phosphatase reaction product in the multivesicular bodies co-localizes with IRBP-CG, which suggests that this molecule is degraded by rod and cone photoreceptors and is not recycled. The pigment epithelium internalizes IRBP-CG and ovalbumin-CG, both of which remain in small cytoplasmic vesicles near the apical plasma membrane. There is no indication that vesicles that contain either IRBP-CG or ovalbumin-CG fuse with the lysosomal system in the pigment epithelial cells during the incubation.  相似文献   

15.
Human retinal pigment epithelium (HRPE) cells are important in maintaining the normal physiology within the neurosensory retina and photoreceptors. Recently, transplantation of HRPE has become a possible therapeutic approach for retinal degeneration. By negative immunoselection (CD45 and glycophorin A), in this study, we have isolated and cultivated adult human bone marrow stem cells (BMSCs) with multilineage differentiation potential. After a 2- to 4-week culture under chondrogenic, osteogenic, adipogenic, and hepatogenic induction medium, these BMSCs were found to differentiate into cartilage, bone, adipocyte, and hepatocyte-like cells, respectively. We also showed that these BMSCs could differentiate into neural precursor cells (nestin-positive) and mature neurons (MAP-2 and Tuj1-positive) following treatment of neural selection and induction medium for 1 month. Furthermore, the plasticity of BMSCs was confirmed by initiating their differentiation into retinal cells and photoreceptor lineages by co-culturing with HRPE cells. The latter system provides an ex vivo expansion model of culturing photoreceptors for the treatment of retinal degeneration diseases.  相似文献   

16.
T Watanabe  M C Raff 《Neuron》1990,4(3):461-467
We describe a reaggregated cell culture system in which retinal neuroepithelial cells from embryonic rats proliferate extensively and give rise to rod photoreceptors on the same schedule in vitro as they do in vivo. Both the proliferative potential of the embryonic neuroepithelial cells and the timing of their differentiation into rods are not changed by the presence of a 50-fold excess of neonatal neural retinal cells, although many more of the embryonic cells develop into rods in these circumstances. In such mixed-age cultures, dividing neonatal cells proliferate much less and give rise to rods much sooner than do dividing embryonic cells, suggesting that the dividing cells at the two ages are intrinsically different. These and other findings suggest that both cell-cell interactions and an intrinsic program in neuroepithelial cells determine cell fate in the developing rat retina.  相似文献   

17.
Heo JW  Kim JH  Cho CS  Jun HO  Kim DH  Yu YS  Kim JH 《PloS one》2012,7(3):e33456
Vascular endothelial growth factor (VEGF) is a major regulator in retinal and choroidal angiogenesis, which are common causes of blindness in all age groups. Recently anti-VEGF treatment using anti-VEGF antibody has revolutionarily improved the visual outcome in patients with vaso-proliferative retinopathies. Herein, we demonstrated that bevacizumab as an anti-VEGF antibody could inhibit differentiation of retinoblastoma cells without affection to cellular viability, which would be mediated via blockade of extracellular signal-regulated kinase (ERK) 1/2 activation. The retinoblastoma cells expressed VEGFR-2 as well as TrkA which is a neurotrophin receptor associated with differentiation of retinoblastoma cells. TrkA in retinoblastoma cells was activated with VEGF treatment. Interestingly even in the concentration of no cellular death, bevascizumab significantly attenuated the neurite formation of differentiated retinoblastoma cells, which was accompanied by inhibition of neurofilament and shank2 expression. Furthermore, bevacizumab inhibited differentiation of retinoblastoma cells by blockade of ERK 1/2 activation. Therefore, based on that the differentiated retinoblastoma cells are mostly photoreceptors, our results suggest that anti-VEGF therapies would affect to the maintenance or function of photoreceptors in mature retina.  相似文献   

18.
Integrins are the major family of cell adhesion receptors that mediate cell adhesion to the extracellular matrix (ECM). Integrin-mediated adhesion and signaling play essential roles in neural development. In this study, we have used echistatin, an RGD-containing short monomeric disintegrin, to investigate the role of integrin-mediated adhesion and signaling during retinal development in Xenopus. Application of echistatin to Xenopus retinal-derived XR1 glial cells inhibited the three stages of integrin-mediated adhesion: cell attachment, cell spreading, and formation of focal adhesions and stress fibers. XR1 cell attachment and spreading increased tyrosine phosphorylation of paxillin, a focal adhesion associated protein, while echistatin significantly decreased phosphorylation levels of paxillin. Application of echistatin or beta(1) integrin function blocking antibody to the embryonic Xenopus retina disrupted retinal lamination and produced rosette structures with ectopic photoreceptors in the outer retina. These results indicate that integrin-mediated cell-ECM interactions play a critical role in cell adhesion, migration, and morphogenesis during vertebrate retinal development.  相似文献   

19.
Identifying the trophic factors for retina photoreceptors and the intracellular pathways activated to promote cell survival is crucial for treating retina neurodegenerative diseases. Docosahexaenoic acid (DHA), the major retinal polyunsaturated fatty acid, prevents photoreceptor apoptosis during early development in vitro , and upon oxidative stress. However, the signaling mechanisms activated by DHA are still unclear. We investigated whether the extracellular signal regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) or the phosphatidylinositol-3-kinase (PI3K) pathway participated in DHA protection. 1,4-Diamino-2,3-dicyano-1,4-bis(2-aminophynyltio) butadiene (U0126), a specific MEK inhibitor, completely blocked the DHA anti-apoptotic effect. DHA rapidly increased ERK phosphorylation in photoreceptors, whereas U0126 blocked this increase. U0126 hindered DHA prevention of mitochondrial depolarization, and blocked the DHA-induced increase in opsin expression. On the contrary, PI3K inhibitors did not diminish the DHA protective effect. DHA promoted the early expression of Bcl-2, decreased Bax expression and reduced caspase-3 activation in photoreceptors. These results suggest that DHA exclusively activates the ERK/MAPK pathway to promote photoreceptor survival during early development in vitro and upon oxidative stress. This leads to the regulation of Bcl-2 and Bax expression, thus preserving mitochondrial membrane potential and inhibiting caspase activation. Hence, DHA, a lipid trophic factor, promotes photoreceptor survival and differentiation by activating the same signaling pathways triggered by peptidic trophic factors.  相似文献   

20.
The extracellular matrix (ECM) at the vertebrate neuromuscular junction is a repository of functionally important molecules, some of which can regulate the formation of synapses during regeneration. One candidate molecule is s-laminin, a 185-kDa homologue of the laminin B1 chain. Whereas several members of the laminin family are present throughout the ECM ensheathing muscle fibers, immunoreactivity for s-laminin is found selectively at synaptic sites in adult and embryonic rats, and is detectable at a time when synaptogenesis is taking place during development. We have reported previously that a rat schwannoma cell line, D6P2T, produces and releases large amounts of s-laminin in culture. We have now purified s-laminin from medium conditioned by these cells by using a simple three-step procedure. Serum-free, conditioned medium is separated by ion-exchange chromatography on DEAE-Sephacel, followed by size-exclusion chromatography on 500 HR-Sephacryl. Finally, s-laminin is dissociated from other ECM components by agarose gel electrophoresis under reducing conditions and recovered in solution by extracting slices of agarose gel. The purified preparation displays one silver-stained band that is recognized by three monoclonal antibodies known to bind to different epitopes on s-laminin. Lectin-binding studies demonstrate that s-laminin is a glycoprotein and bears many of the carbohydrate moieties present on the B1 and B2 chains of laminin. Thus, the three 185-220-kDa members of the laminin family are related in both their protein and carbohydrate domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号