首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitogen-induced activation of p70(s6k) is associated with the phosphorylation of specific sites which are negatively affected by the immunosuppressant rapamycin, the fungal metabolite wortmannin, and the methylxanthine SQ20006. Recent reports have focused on the role of the amino terminus of the p85(s6k) isoform in mediating kinase activity, with the observation that amino-terminal truncation mutants are activated in the presence of rapamycin while retaining their sensitivity to wortmannin. Here we show that the effects of previously described amino- and carboxy-terminal truncations on kinase activity are ultimately reflected in the phosphorylation state of the enzyme. Mutation of the principal rapamycin-targeted phosphorylation site, T-389, to an acidic residue generates a form of the kinase which is as resistant to wortmannin or SQ20006 as it is to rapamycin, consistent with the previous observation that T-389 was a common target of all three inhibitors. Truncation of the first 54 residues of the amino terminus blocks the serum-induced phosphorylation of three rapamycin-sensitive sites, T-229 in the activation loop and T-389 and S-404 in the linker region. This correlates with a severe reduction in the ability of the kinase to be activated by serum. However, loss of mitogen activation conferred by the removal of the amino terminus is reversed by additional truncation of the carboxy-terminal domain, with the resulting mutant demonstrating phosphorylation of the remaining two rapamycin-sensitive sites, T-229 and T-389. In this double-truncation mutant, phosphorylation of T-229 occurs in the basal state, whereas mitogen stimulation is required to induce acute upregulation of T-389 phosphorylation. The phosphorylation of both sites proceeds unimpaired in the presence of rapamycin, indicating that the kinases responsible for the phosphorylation of these sites are not inhibited by the macrolide. In contrast, activation of the double-truncation mutant is blocked in the presence of wortmannin or SQ20006, and these agents completely block the phosphorylation of T-389 while having only a marginal effect on T-229 phosphorylation. When the T-389 site is mutated to an acidic residue in the double-truncation background, the activation of the resulting mutant is insensitive to the wortmannin and SQ20006 block, but interestingly, the mutant is activated to a significantly greater level than a control in the presence of rapamycin. These data are consistent with the hypothesis that T-389 is the principal regulatory phosphorylation site, which, in combination with hyperphosphorylation of the autoinhibitory domain S/TP sites, is acutely regulated by external effectors, whereas T-229 phosphorylation is regulated primarily by internal mechanisms.  相似文献   

2.
The maturation and maintenance of dendritic spines depends on neuronal activity and protein synthesis. One potential mechanism involves mammalian target of rapamycin, which promotes protein synthesis through phosphorylation of eIF4E-binding protein and p70 ribosomal S6 kinase 1 (S6K). Upon extracellular stimulation, mammalian target of rapamycin phosphorylates S6K at Thr-389. S6K also undergoes phosphorylation at other sites, including four serine residues in the autoinhibitory domain. Despite extensive biochemical studies, the importance of phosphorylation in the autoinhibitory domain in S6K function remains unresolved, and its role has not been explored in the cellular context. Here we demonstrated that S6K in neuron was phosphorylated at Ser-411 within the autoinhibitory domain by cyclin-dependent kinase 5. Ser-411 phosphorylation was regulated by neuronal activity and brain-derived neurotrophic factor (BDNF). Knockdown of S6K in hippocampal neurons by RNAi led to loss of dendritic spines, an effect that mimics neuronal activity blockade by tetrodotoxin. Notably, coexpression of wild type S6K, but not the phospho-deficient S411A mutant, could rescue the spine defects. These findings reveal the importance of cyclin-dependent kinase 5-mediated phosphorylation of S6K at Ser-411 in spine morphogenesis driven by BDNF and neuronal activity.  相似文献   

3.
The anti-tumorigenic and anti-proliferative effects of N-alpha-tosyl-l-phenylalanyl chloromethyl ketone (TPCK) have been known for more than three decades. Yet little is known about the discrete cellular targets of TPCK controlling these effects. Previous work from our laboratory showed TPCK, like the immunosuppressant rapamycin, to be a potent inhibitor of the 70-kilodalton ribosomal S6 kinase 1 (S6K1), which mediates events involved in cell growth and proliferation. We show here that rapamycin and TPCK display distinct inhibitory mechanisms on S6K1 as a rapamycin-resistant form of S6K1 was TPCK-sensitive. Additionally, we show that TPCK inhibited the activation of the related kinase and proto-oncogene Akt. Upstream regulators of S6K1 and Akt include phosphoinositide 3-kinase (PI 3-K) and 3-phosphoinositide-dependent kinase 1 (PDK1). Whereas TPCK had no effect on either mitogen-regulated PI 3-K activity or total cellular PDK1 activity, TPCK prevented phosphorylation of the PDK1 regulatory sites in S6K1 and Akt. Furthermore, whereas both PDK1 and the mitogen-activated protein kinase (MAPK) are required for full activation of the 90-kilodalton ribosomal S6 kinase (RSK), TPCK inhibited RSK activation without inhibiting MAPK activation. Consistent with the capacity of RSK and Akt to mediate a cell survival signal, in part through phosphorylation of the pro-apoptotic protein BAD, TPCK reduced BAD phosphorylation and led to cell death in interleukin-3-dependent 32D cells. Finally, in agreement with results seen in embryonic stem cells lacking PDK1, protein kinase A activation was not inhibited by TPCK showing TPCK specificity for mitogen-regulated PDK1 signaling. TPCK inhibition of PDK1 signaling thus disables central kinase cascades governing diverse cellular processes including proliferation and survival and provides an explanation for its striking biological effects.  相似文献   

4.
The mammalian target of rapamycin, mTOR, is a Ser/Thr kinase that promotes cell growth and proliferation by activating ribosomal protein S6 kinase 1 (S6K1). We previously identified a conserved TOR signaling (TOS) motif in the N terminus of S6K1 that is required for its mTOR-dependent activation. Furthermore, our data suggested that the TOS motif suppresses an inhibitory function associated with the C terminus of S6K1. Here, we have characterized the mTOR-regulated inhibitory region within the C terminus. We have identified a conserved C-terminal "RSPRR" sequence that is responsible for an mTOR-dependent suppression of S6K1 activation. Deletion or mutations within this RSPRR motif partially rescue the kinase activity of the S6K1 TOS motif mutant (S6K1-F5A), and this rescued activity is rapamycin resistant. Furthermore, we have shown that the RSPRR motif significantly suppresses S6K1 phosphorylation at two phosphorylation sites (Thr-389 and Thr-229) that are crucial for S6K1 activation. Importantly, introducing both the Thr-389 phosphomimetic and RSPRR motif mutations into the catalytically inactive S6K1 mutant S6K1-F5A completely rescues its activity and renders it fully rapamycin resistant. These data show that the N-terminal TOS motif suppresses an inhibitory function mediated by the C-terminal RSPRR motif. We propose that the RSPRR motif interacts with a negative regulator of S6K1 that is normally suppressed by mTOR.  相似文献   

5.
6.
In order to study the role of phosphatidylinositol-3-kinase (PI3K), PKB, FRAP, S6 kinase, and MAP kinase in insulin-stimulated glycogen synthesis, we used a specific inhibitor of PI3K, LY294002, the immunosuppressant inhibitor of FRAP, rapamycin, and the inhibitor of MAPK kinase (MEK)/MAPK, PD98059, in rat HTC hepatoma cells overexpressing human insulin receptors. The PI3K inhibitor LY294002 completely blocks insulin-stimulated glycogen synthesis by inhibiting glycogen synthase, PKB (Akt-1), and FRAP (RAFT) autophosphorylation, as well as p70 S6 kinase activation, whereas insulin receptor substrates tyrosine phosphorylation and MEK activity were not affected. However, rapamycin only partially blocks insulin-stimulated glycogen synthesis by partial inhibition of glycogen synthase, whereas it completely blocks S6 kinase activation and FRAP autophosphorylation, but does not affect either PKB autophosphorylation, MEK activity, or insulin receptor tyrosine phosphorylation. Insulin-stimulated glycogen synthesis and glycogen synthase were not affected by the MEK/MAPK inhibitor PD98059. These data suggest that the PI3K, and not the MAPK pathway plays an important role in the insulin-stimulated glycogen synthesis in the hepatocyte, partly mediated by FRAP and S6 kinase activation. However, the inhibition of FRAP and S6 kinase activation is not sufficient to block insulin-stimulated glycogen synthesis, suggesting an important role of a branching pathway upstream of S6 kinase and downstream of PI3K, which is probably mediated by PKB in the signaling of the insulin receptor in hepatoma HTC cells.  相似文献   

7.
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase known to control initiation of translation through two downstream pathways: eukaryotic initiation factor 4E-binding protein 1 (4E-BP1)/eukaryotic initiation factor 4E and ribosomal p70 S6 kinase (S6K1). We previously showed in C2C12 murine myoblasts that rapamycin arrests cells in G(1) phase and completely inhibits terminal myogenesis. To elucidate the pathways that regulate myogenesis, we established stable C2C12 cell lines that express rapamycin-resistant mTOR mutants (mTORrr; S2035I) that have N-terminal deletions (Delta10 or Delta91) or are full-length kinase-dead mTORrr proteins. Additional clones expressing a constitutively active S6K1 were also studied. Our results show that Delta10mTORrr signals 4E-BP1 and permits rapamycin-treated myoblasts to differentiate, confirming the mTOR dependence of the inhibition of myogenesis by rapamycin. C2C12 cells expressing either Delta91mTORrr or kinase-dead mTORrr(D2338A) could not phosphorylate 4E-BP1 in the presence of rapamycin and could not abrogate the inhibition of myogenesis. Taken together, our results indicate that both the kinase function of mTOR and the N terminus (residues 11-91, containing part of the first HEAT domain) are essential for myogenic differentiation. In contrast, constitutive activation of S6K1 does not abrogate rapamycin inhibition of either proliferation or myogenic differentiation.  相似文献   

8.
Aberrant activation and mutation status of proteins in the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and the mitogen activated protein kinase (MAPK) signaling pathways have been linked to tumorigenesis in various tumors including urothelial carcinoma (UC). However, anti-tumor therapy with small molecule inhibitors against mTOR turned out to be less successful than expected. We characterized the molecular mechanism of this pathway in urothelial carcinoma by interfering with different molecular components using small chemical inhibitors and siRNA technology and analyzed effects on the molecular activation status, cell growth, proliferation and apoptosis. In a majority of tested cell lines constitutive activation of the PI3K was observed. Manipulation of mTOR or Akt expression or activity only regulated phosphorylation of S6K1 but not 4E-BP1. Instead, we provide evidence for an alternative mTOR independent but PI3K dependent regulation of 4E-BP1. Only the simultaneous inhibition of both S6K1 and 4E-BP1 suppressed cell growth efficiently. Crosstalk between PI3K and the MAPK signaling pathway is mediated via PI3K and indirect by S6K1 activity. Inhibition of MEK1/2 results in activation of Akt but not mTOR/S6K1 or 4E-BP1. Our data suggest that 4E-BP1 is a potential new target molecule and stratification marker for anti cancer therapy in UC and support the consideration of a multi-targeting approach against PI3K, mTORC1/2 and MAPK.  相似文献   

9.
10.
BACKGROUND: The mammalian target of rapamycin (mTOR) controls the translation machinery via activation of S6 kinases 1 and 2 (S6K1/2) and inhibition of the eukaryotic initiation factor 4E (eIF4E) binding proteins 1, 2, and 3 (4E-BP1/2/3). S6K1 and 4E-BP1 are regulated by nutrient-sensing and mitogen-activated pathways. The molecular basis of mTOR regulation of S6K1 and 4E-BP1 remains controversial. RESULTS: We have identified a conserved TOR signaling (TOS) motif in the N terminus of all known S6 kinases and in the C terminus of the 4E-BPs that is crucial for phosphorylation and regulation S6K1 and 4E-BP1 activities. Deletion or mutations within the TOS motif significantly inhibit S6K1 activation and the phosphorylation of its hydrophobic motif, Thr389. In addition, this sequence is required to suppress an inhibitory activity mediated by the S6K1 C terminus. The TOS motif is essential for S6K1 activation by mTOR, as mutations in this motif mimic the effect of rapamycin on S6K1 phosphorylation, and render S6K1 insensitive to changes in amino acids. Furthermore, only overexpression of S6K1 with an intact TOS motif prevents 4E-BP1 phosphorylation by a common mTOR-regulated modulator of S6K1 and 4E-BP1. CONCLUSIONS: S6K1 and 4E-BP1 contain a conserved five amino acid sequence (TOS motif) that is crucial for their regulation by the mTOR pathway. mTOR seems to regulate S6K1 by two distinct mechanisms. The TOS motif appears to function as a docking site for either mTOR itself or a common upstream activator of S6K1 and 4E-BP1.  相似文献   

11.
p70 ribosomal S6 kinase (p70S6K) is a downstream effector of the mTOR signaling pathway involved in cell proliferation, cell growth, cell-cycle progression, and glucose homeostasis. Multiple phosphorylation events within the catalytic, autoinhibitory, and hydrophobic motif domains contribute to the regulation of p70S6K. We report the crystal structures of the kinase domain of p70S6K1 bound to staurosporine in both the unphosphorylated state and in the 3′-phosphoinositide-dependent kinase-1-phosphorylated state in which Thr-252 of the activation loop is phosphorylated. Unphosphorylated p70S6K1 exists in two crystal forms, one in which the p70S6K1 kinase domain exists as a monomer and the other as a domain-swapped dimer. The crystal structure of the partially activated kinase domain that is phosphorylated within the activation loop reveals conformational ordering of the activation loop that is consistent with a role in activation. The structures offer insights into the structural basis of the 3′-phosphoinositide-dependent kinase-1-induced activation of p70S6K and provide a platform for the rational structure-guided design of specific p70S6K inhibitors.  相似文献   

12.
Toll‐like receptors 2 (TLR2) and 4 (TLR4) are present in the plasma membrane of skeletal muscle cells where their functions remain incompletely resolved. They can bind various extracellular ligands, such as FSL‐1, lipopolysaccharide (LPS) and/or palmitic acid (PA). We have investigated the link between PA, TLR2/4 and ribosomal S6 kinase 1 (S6K1) in C2C12 myotubes. Incubation with agonists of either TLR2 or TLR4, and with a high concentration of PA, increased S6K1 phosphorylation. Canonical upstream kinases of S6K1, protein kinase B (PKB) and mammalian target of rapamycin complex 1 (mTORC1), were regulated in the opposite way by PA, indicating that these kinases were probably not involved. By using the SB202190 inhibitor, p38 MAPK (mitogen‐activated protein kinase) was found to be a key mediator of PA‐induced phosphorylation of S6K1. Downregulation of either tlr2 or tlr4 gene expression by small interfering RNAs prevented the activation of both p38 MAPK and S6K1 by FSL‐1, LPS or PA. Thus TLR2 and TLR4 agonists can increase the level of S6K1 phosphorylation in a p38 MAPK‐dependent way in C2C12 myotubes. As PA induced the same intracellular signalling, a novel atypical pathway for PA is induced at the cellular membrane level and results in a higher phosphorylation state of S6K1.  相似文献   

13.
J Chung  C J Kuo  G R Crabtree  J Blenis 《Cell》1992,69(7):1227-1236
The macrolide rapamycin blocks cell cycle progression in yeast and various animal cells by an unknown mechanism. We demonstrate that rapamycin blocks the phosphorylation and activation of the 70 kd S6 protein kinases (pp70S6K) in a variety of animal cells. The structurally related drug FK506 had no effect on pp70S6K activation but at high concentrations reversed the rapamycin-induced block, confirming the requirement for the rapamycin and FK506 receptor, FKBP. Rapamycin also interfered with signaling by these S6 kinases, blocking serum-stimulated S6 phosphorylation and delaying entry of Swiss 3T3 cells into S phase. Neither rapamycin nor FK506 blocked activation of a distinct family of S6 kinases (RSKs) or the MAP kinases. These studies identify a rapamycin-sensitive signaling pathway, argue for a ubiquitous role for FKBPs in signal transduction, indicate that FK506-FKBP-calcineurin complexes do not interfere with pp70S6K signaling, and show that in fibroblasts pp70S6K, not RSK, is the physiological S6 kinase.  相似文献   

14.
Female mosquitoes are effective disease vectors, because they take blood from vertebrate hosts to obtain nutrients for egg development. Amino acid signaling via the target of rapamycin (TOR) pathway has been identified as a key requirement for the activation of egg development after a blood meal. We report the characterization of the TOR kinase and one of its major downstream targets, S6 kinase, of the yellow fever mosquito Aedes aegypti during egg development in adult females. Both TOR and S6K mRNA are expressed at high levels in the ovaries and in lower levels in fat body and other tissues. After a blood meal, the subcellular localization of TOR shifts from the cytoplasm to the plasma membrane of fat body cells. By detecting phosphothreonine 388 of mosquito S6 kinase, we show that TOR activity strongly increases in fat body and ovaries after a blood meal in vivo. Furthermore, phosphorylation of S6 kinase increases in in vitro cultured fat bodies after stimulation with amino acids. This increase is sensitive to the TOR inhibitor rapamycin in a concentration-dependent manner but not to the phosphatidylinositol 3-kinase/phosphatidylinositol 3-kinase-related kinase inhibitor LY294002, the MAPK inhibitor PD98059, or the translational inhibitor cycloheximide. RNA interference-mediated reduction of S6 kinase strongly inhibits the amino acid-induced up-regulation of the major yolk protein vitellogenin in vitro and effectively disrupts egg development after a blood meal in vivo. Our data show that TOR-dependent activation of S6 kinase is a central step in the transduction of nutritional information during egg development in mosquitoes.  相似文献   

15.
Fibroblast growth factor-9 (FGF9) is a potent mitogen that stimulates normal and cancer cell proliferation though the signaling mechanism is not fully understood. In this study, we aimed to unravel the signaling cascades mediate FGF9 actions in human uterine endometrial stromal cell. Our results demonstrate that the mitogenic effect of FGF9 is transduced via two parallel but additive signaling pathways involving mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase. Activation of mTOR by FGF9 induces p70 ribosomal S6 kinase (S6K1) phosphorylation, cyclin expression, and cell proliferation, which are independent of phosphatidylinositol 3-kinase and Akt. Coimmunoprecipitation analysis demonstrates that mTOR physically associates with S6K1 upon FGF9 treatment, whereas ablation of mTOR activity using RNA interference or pharmacological inhibitor blocks S6K1 phosphorylation and cell proliferation induced by FGF9. Further study demonstrates that activation of mTOR is regulated by a phospholipase Cgamma-controlled calcium signaling pathway. These studies provide evidence to demonstrate, for the first time, that a novel signaling cascade involving phospholipase Cgamma, calcium, mTOR, and S6K1 is activated by FGF9 in a receptor-specific manner.  相似文献   

16.
In this work, we analyzed the role of the PI3K-p70 S6 kinase (S6K) signaling cascade in the stimulation of endothelial cell proliferation. We found that inhibitors of the p42/p44 MAPK pathway (PD98059) and the PI3K-p70 S6K pathway (wortmannin, Ly294002, and rapamycin) all block thymidine incorporation stimulated by fetal calf serum in the resting mouse endothelial cell line 1G11. The action of rapamycin can be generalized, since it completely inhibits the mitogenic effect of fetal calf serum in primary endothelial cell cultures (human umbilical vein endothelial cells) and another established capillary endothelial cell line (LIBE cells). The inhibitory effect of rapamycin is only observed when the inhibitor is added at the early stages of G(0)-G(1) progression, suggesting an inhibitory action early in G(1). Rapamycin completely inhibits growth factor stimulation of protein synthesis, which perfectly correlates with the inhibition of cell proliferation. In accordance with its inhibitory action on protein synthesis, activation of cyclin D1 and p21 proteins by growth factors is also blocked by preincubation with rapamycin. Expression of a p70 S6K mutant partially resistant to rapamycin reverses the inhibitory effect of the drug on DNA synthesis, indicating that rapamycin action is via p70 S6K. Thus, in vascular endothelial cells, activation of protein synthesis via p70 S6K is an essential step for cell cycle progression in response to growth factors.  相似文献   

17.
TLR-4-mediated signaling is significantly impaired in macrophages from HIV(+) persons, predominantly owing to altered MyD88-dependent pathway signaling caused in part by constitutive activation of PI3K. In this study we assessed in these macrophages if the blunted increase in TLR-4-mediated TNF-α release induced by lipid A (LA) is associated with PI3K-induced upregulation of mammalian target of rapamycin (mTOR) activity. mTOR inhibition with rapamycin enhanced TLR-4-mediated TNF-α release, but suppressed anti-inflammatory IL-10 release. Targeted gene silencing of mTOR in macrophages resulted in LA-induced TNF-α and IL-10 release patterns similar to those induced by rapamycin. Rapamycin restored MyD88/IL-1R-associated kinase interaction in a dose-dependent manner. Targeted gene silencing of MyD88 (short hairpin RNA) and mTOR (RNA interference) inhibition resulted in TLR-4-mediated 70-kDa ribosomal protein S6 kinase activation and enhanced TNF-α release, whereas IL-10 release was inhibited in both silenced and nonsilenced HIV(+) macrophages. Furthermore, mTOR inhibition augmented LA-induced TNF-α release through enhanced and prolonged phosphorylation of ERK1/2 and JNK1/2 MAPK, which was associated with time-dependent MKP-1 destabilization. Taken together, impaired TLR-4-mediated TNF-α release in HIV(+) macrophages is attributable in part to mTOR activation by constitutive PI3K expression in a MyD88-dependent signaling pathway. These changes result in MAPK phosphatase 1 stabilization, which shortens and blunts MAPK activation. mTOR inhibition may serve as a potential therapeutic target to upregulate macrophage innate immune host defense responsiveness in HIV(+) persons.  相似文献   

18.
A critical step in S6 kinase 1 (S6K1) activation is Thr(229) phosphorylation in the activation loop by the phosphoinositide-dependent protein kinase (PDK1). Thr(229) phosphorylation requires prior phosphorylation of the Ser/Thr-Pro sites in the autoinhibitory domain and Thr(389) in the linker domain, consistent with PDK1 more effectively catalyzing Thr(229) phosphorylation in a variant harboring acidic residues in these positions (S6K1-E389D(3)E). S6K1-E389D(3)E has high basal activity and exhibits partial resistance to rapamycin and wortmannin, and its activity can be further augmented by mitogens, effects presumably mediated by Thr(229) phosphorylation. However, PDK1-induced Thr(229) phosphorylation is reported to be constitutive rather than phosphatidylinositide 3,4,5-trisphosphate-dependent, suggesting that S6K1-E389D(3)E activity is mediated through a distinct site. Here we use phosphospecific antibodies to show that Thr(229) is fully phosphorylated in S6K1-E389D(3)E in the absence of mitogens and that regulation of S6K1-E389D(3)E activity by mitogens, rapamycin, or wortmannin parallels Ser(371) phosphorylation. Consistent with this observation, a dominant interfering allele of the mammalian target of rapamycin, mTOR, inhibits mitogen-induced Ser(371) phosphorylation and activation of S6K1-E389D(3)E, whereas wild type mTOR stimulates both responses. Moreover, in vitro mTOR directly phosphorylates Ser(371), and this event modulates Thr(389) phosphorylation by mTOR, compatible with earlier in vivo findings.  相似文献   

19.
Ribosomal S6 kinase (S6K1), through phosphorylation of the 40 S ribosomal protein S6 and regulation of 5'-terminal oligopyrimidine tract mRNAs, is an important regulator of cellular translational capacity. S6K1 has also been implicated in regulation of cell size. We have recently identified S6K2, a homolog of S6K1, which phosphorylates S6 in vitro and is regulated by the phosphatidylinositide 3-kinase (PI3-K) and mammalian target of rapamycin pathways in vivo. Here, we characterize S6K2 regulation by PI3-K signaling intermediates and compare its regulation to that of S6K1. We report that S6K2 is activated similarly to S6K1 by the PI3-K effectors phosphoinositide-dependent kinase 1, Cdc42, Rac, and protein kinase Czeta but that S6K2 is more sensitive to basal activation by myristoylated protein kinase Czeta than is S6K1. The C-terminal sequence of S6K2 is divergent from that of S6K1. We find that the S6K2 C terminus plays a greater role in S6K2 regulation than does the S6K1 C terminus by functioning as a potent inhibitor of activation by various agonists. Removal of the S6K2 C terminus results in an enzyme that is hypersensitive to agonist-dependent activation. These data suggest that S6K1 and S6K2 are similarly activated by PI3-K effectors but that sequences unique to S6K2 contribute to stronger inhibition of its kinase activity. Understanding the regulation of the two S6K homologs may provide insight into the physiological roles of these kinases.  相似文献   

20.
Previous studies have shown that the noncatalytic carboxy-terminal tail of the p70 S6 kinase (amino acids 422 to 525) contains an autoinhibitory pseudosubstrate domain that is phosphorylated in situ during activation and in vitro by mitogen-activated protein kinases. The present study shows that a recombinant p70 deleted of the carboxy-terminal tail (p70 delta CT104) nevertheless exhibits a basal and serum-stimulated 40S kinase activity and susceptibility to inhibition by wortmannin very similar to those of the parent, full-length p70 kinase. Carboxy-terminal deletion reduces the extent of maximal inhibition produced by rapamycin, from > 95% in the full-length p70 to 60 to 80% in p70 delta CT104, without altering the sensitivity to rapamycin inhibition (50% inhibitory concentration of 2 nM). Serum activation of p70 delta CT104, as with the parent, full-length p70, is accompanied by an increase in 32P content (about twofold) in situ and a slowing in electrophoretic mobility; both modifications are inhibited by pretreatment with wortmannin or rapamycin. 32P-peptide maps of p70 delta CT104 show multisite phosphorylation, and wortmannin and rapamycin appear to cause preferential dephosphorylation of the same subset of sites. Thus, it is likely that activation of the kinase requires phosphorylation of p70 at sites in addition to those previously identified in the carboxy-terminal tail. Evidence that the carboxy-terminal tail actually functions as a potent intramolecular inhibitor of kinase activity in situ is uncovered by deletion of a short acidic segment (amino acids 29 to 46) from the p70 amino-terminal noncatalytic region. Deletion of amino acids 29 to 46 causes a >95% inhibition of p70 activity despite continue phosphorylation of the carboxy-terminal tail in situ; additional deletion of the carboxy-terminal tail (yielding p70 delta 29-46/ delta CT104) increases activity 10-fold, to a level approaching that of p70 delta CT104. Deletion of residues 29 to 46 also abolishes completely the sensitivity of p70 to inhibition by rapamycin but does not alter the susceptibility to activation by serum of inhibition by wortmannin. Although the mechanisms underlying the effects of the delta 29-46 deletion are not known, they are not attributable to loss of the major in situ p70 phosphorylation site at Ser-40. Thus, activation of the p70 S6 kinase involves multiple, independent inputs directed at different domains of the p70 polypeptide. Disinhibition from the carboxy-terminal tail requires, in addition to its multisite phosphorylation, an activating input dependent on the presence of amino acids 29 to 46; this p70-activating input may be the same as that inhibited by rapamycin but is distinct from that arising from the wortmannin-inhibitable phosphatidylinositol 3-kinase. In addition, as exemplified by the rapamycin-resistant but mitogen- and wortmannin-sensitive p70 delta 29-46/ delta CT104 mutant, a further activating input, which probably involves site-specific phosphorylation in the segment between amino acids 46 to 421, is necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号