首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have determined the secondary structure of the human 28S rRNA molecule based on comparative analysis of available eukaryotic cytoplasmic and prokaryotic large-rRNA gene sequences. Examination of large-rRNA sequences of both distantly and closely related species has enabled us to derive a structure that accounts both for highly conserved sequence tracts and for previously unanalyzed variable-sequence tracts that account for the evolutionary differences in size among the large rRNAs.Human 28S rRNA is composed of two different types of sequence tracts: conserved and variable. They differ in composition, degree of conservation, and evolution. The conserved regions demonstrate a striking constancy of size and sequence. We have confirmed that the conserved regions of large-rRNA molecules are capable of forming structures that are superimposable on one another. The variable regions contain the sequences responsible for the 83% increase in size of the human large-rRNA molecule over that ofEscherichia coli. Their locations in the gene are maintained during evolution. They are G+C rich and largely nonhomologous, contain simple repetitive sequences, appear to evolve by frequent recombinational events, and are capable of forming large, stable hairpins.The secondary-structure model presented here is in close agreement with existing prokaryotic 23S rRNA secondary-structure models. The introduction of this model helps resolve differences between previously proposed prokaryotic and eukaryotic large-rRNA secondary-structure models.  相似文献   

2.
The complete nucleotide sequence of Citrus limon 26S rDNA has been determined. The sequence has been aligned with large ribosomal RNA (L-rRNA) sequences of Escherichia coli, Saccharomyces cerevisiae and Oryza sativa. Nine extensive expansion segments in dicot 26S rRNA relative to E. coli 23S rRNA have been identified and compared with analogous segments of monocot, yeast, amphibian and human L-rRNAs. A secondary structure model for lemon 26S rRNA has been derived based on the refined model of E. coli 23S rRNA. It has been compared with other eukaryotic L-rRNAs models in terms of location of functionally important regions. Origin and evolution of L-rRNA expansion segments are discussed.  相似文献   

3.
Summary Single-strand-specific nuclease S1 was employed as a structural probe to confirm locations of unpaired nucleotide bases in 5S rRNAs purified from prokaryotic species of rRNA superfamily I. Limited nuclease S1 digests of 3- and 5-end-labeled [32P]5S rRNAs were electrophoresed in parallel with reference endoribonuclease digests on thin allel with reference endoribonuclease digests on thin sequencing gels. Nuclease S1 primary hydrolysis patterns were comparable for 5S rRNAs prepared from all 11 species examined in this study. The locations of base-paired regions determined by enzymatic analysis corroborate the general features of the proposed universal five-helix model for prokaryotic 5S rRNA, although the results of this study suggest a significant difference between prokaryotic and eukaryotic 5S rRNAs in the evolution of helix IV. Furthermore, the extent of base-pairing predicted by helix IV needs to be reevaluated for eubacterial species. Clipping patterns in helices II and IV appear to be consistent with a secondary structural model that undergoes a conformational rearrangement between two (or more) structures. Primary clipping patterns in the helix II region, obtained by S1 analysis, may provide useful information concerning the tertiary structure of the 5S rRNA molecule.  相似文献   

4.
An EMBL4 recombinant phage which encodes one of the full length of the aphid ribosomal DNA has been isolated from the aphid genomic library. Determination of the complete nucleotide sequence of the aphid 18S rRNA gene revealed that it is 2469 bp with a G + C content of 59%. The aphid 18S rRNA gene studied here is the longest and has the highest G + C content among the 18S rRNA genes examined so far. Evidence provided by the S1 nuclease assay suggests that the aphid 18S rRNA gene examined in this study is not a pseudogene containing an insertion sequence. Based on the nucleotide sequence of the 18S rRNA gene, we constructed a presumed secondary-structure model of the aphid 18S rRNA. In the aphid 18S rRNA, the eucaryote-specific E21 and 41 region are supposed to be longer and more complex than the counterparts of other 18S rRNA.  相似文献   

5.
The sequences of the 16S rRNA genes from 38 strains of the family Thermaceae were compared by alignment analysis. The genus-specific and species-specific base substitutions or base deletions (signature positions) were found in three hypervariable regions (in the helices 6, 10 and 17). The differentiation of secondary structures of the high variable regions in the 5' end (38-497) containing several signature positions further supported the concept. Based on the comparisons of the secondary structures in the segments of 16S rRNAs, a key to the species of the family Thermaceae was proposed.  相似文献   

6.
7.
本研究从担子菌毛头鬼伞(Coprinus comatus)菌丝中分离获得一条新的28S rRNA序列,序列长度为906bp(GenBank accession No.GU568178)。该序列是我们前期在从毛头鬼伞中克隆一种烟草花叶病毒(TMV)的抗性蛋白基因y3时意外获得的一条非目的条带。将此获得的序列通过NCBI的BLAST,以及与其同源序列进行Clustal w和MEGA聚类分析,证实该序列是28S rRNA,同时还发现毛头鬼伞的系统进化关系比较离散。此外,在这一新28S rRNA与TMV的抗性蛋白基因y3之间发现有两个同源区段有可能是PCR扩增y3基因时出现非目的条带的原因。在这两个同源区段中,其一区段与克隆y3基因时所用的PCR引物之一有较高的相似性,另一区段也是一般PCR引物的类似物。本研究中新28S rRNA序列的获得是PCR扩增中出现非目的条带的新例,该序列的发现及聚类分析的结果有助于真菌基因组学研究及真菌生物分子分类系统的建立。  相似文献   

8.
We utilize the secondary structural properties of the 28S rRNA D2–D10 expansion segments to hypothesize a multiple sequence alignment for major lineages of the hymenopteran superfamily Ichneumonoidea (Braconidae, Ichneumonidae). The alignment consists of 290 sequences (originally analyzed in Belshaw and Quicke, Syst Biol 51:450–477, 2002) and provides the first global alignment template for this diverse group of insects. Predicted structures for these expansion segments as well as for over half of the 18S rRNA are given, with highly variable regions characterized and isolated within conserved structures. We demonstrate several pitfalls of optimization alignment and illustrate how these are potentially addressed with structure-based alignments. Our global alignment is presented online at (http://hymenoptera.tamu.edu/rna) with summary statistics, such as basepair frequency tables, along with novel tools for parsing structure-based alignments into input files for most commonly used phylogenetic software. These resources will be valuable for hymenopteran systematists, as well as researchers utilizing rRNA sequences for phylogeny estimation in any taxon. We explore the phylogenetic utility of our structure-based alignment by examining a subset of the data under a variety of optimality criteria using results from Belshaw and Quicke (2002) as a benchmark.Access to on-line data: http://hymenoptera.tamu.edu/rna; username, ichs; password, ichzzz  相似文献   

9.
【目的】小毛瓢虫属Scymnus Kugelann昆虫主要捕食蚜虫、蚧虫等害虫,是一类经济上重要的天敌昆虫。目前针对小毛瓢虫属的系统发育研究尚属空白,亚属之间的系统演化关系尚不明确,为了建立合理的分类系统,亟需对小毛瓢虫属的亲缘关系进行研究和探讨。【方法】以华南农业大学馆藏的小毛瓢虫属5亚属共44种为研究对象,采用PCR技术对12S, 16S和28S rRNA基因的部分序列进行扩增;运用MEGA 7.0分析了小毛瓢虫属内12S, 16S和28S rRNA基因的碱基组成,基于K2P模型计算了小毛瓢虫属44种的种间遗传距离;采用最大似然法(maximum-likelihood, ML)和贝叶斯推断法(Bayesian-inference, BI)构建该属的系统发育树。【结果】扩增获得小毛瓢虫属44种的12S rRNA基因序列平均长度为356 bp, 16S rRNA基因序列平均长度为351 bp, 28S rRNA基因序列平均长度为315 bp;序列分析表明,12S rRNA基因的A, T, G和C平均含量分别为38.8%, 43.5%, 11.9%和5.8%, 16S rRNA基因的A, T, G和C平均含量分别为37.6%, 40.3%, 14.4%和7.7%, 28S rRNA基因的A, T, G和C平均含量分别为26.7%, 18.3%, 31.4%和23.5%;基于联合序列分析的种间遗传距离为0.004~0.276,平均遗传距离为0.115。系统发育分析结果表明,小毛瓢虫属为单系起源,而小毛瓢虫亚属Scymnus(Scymnus) Kugelann、毛瓢虫亚属Scymnus(Neopullus) Sasaji、小瓢虫亚属Scymnus(Pullus) Mulsant和拟小瓢虫亚属Scymnus(Parapullus) Yang均为并系起源。【结论】基于12S, 16S和28S rRNA基因序列的小毛瓢虫属系统发育分析显示传统的形态学分类体系与基于分子数据分析的结果部分不一致,这表明应该对该属内各亚属的鉴别特征进行全面检视,筛选并确立各亚属的形态指标,同时也表明该属内的亚属分类单元需重新厘定。  相似文献   

10.
1. Internal transcribed spacer (ITS) 1 and ITS 2 of rDNA of the pea aphid, Acyrthosiphon pisum consisted of 229 and 280 nucleotides, whose G+C contents were 70 and 74%, respectively. 2. Secondary structure models constructed for the ITS 1 and ITS 2 suggested that certain structural motifs have been conserved in these regions despite extensive divergence in nucleotide sequence due to species.  相似文献   

11.
阎氏菌科的16S rRNA可变区二级结构分析   总被引:1,自引:0,他引:1  
采用16SrRNA可变区二级结构图形分析,比较了阎氏菌科阎氏菌属典型种与微球菌亚目中几个相关科属典型种可变区二级结构的变化。结果表明,V3、V4存在明显的不同。将16SrRNA二级结构划分成不同的结构单元,提出在9个可变区中,至少要有2个不同的结构单元才可以定为新科,存在1个不同的结构单元可以定位新属;并认为16SrRNA可变区二级结构分析,可以作为一种辅助手段,应用于原核生物属以上水平的分类。  相似文献   

12.
We analyze the secondary structure of two expansion segments (D2, D3) of the 28S ribosomal (rRNA)-encoding gene region from 527 chalcidoid wasp taxa (Hymenoptera: Chalcidoidea) representing 18 of the 19 extant families. The sequences are compared in a multiple sequence alignment, with secondary structure inferred primarily from the evidence of compensatory base changes in conserved helices of the rRNA molecules. This covariation analysis yielded 36 helices that are composed of base pairs exhibiting positional covariation. Several additional regions are also involved in hydrogen bonding, and they form highly variable base-pairing patterns across the alignment. These are identified as regions of expansion and contraction or regions of slipped-strand compensation. Additionally, 31 single-stranded locales are characterized as regions of ambiguous alignment based on the difficulty in assigning positional homology in the presence of multiple adjacent indels. Based on comparative analysis of these sequences, the largest genetic study on any hymenopteran group to date, we report an annotated secondary structural model for the D2, D3 expansion segments that will prove useful in assigning positional nucleotide homology for phylogeny reconstruction in these and closely related apocritan taxa.  相似文献   

13.
A detailed restriction endonuclease map was prepared for the cloned 5.8 S ribosomal RNA (rRNA) gene region of the brine shrimp Artemia. The nucleotide sequence of the 5.8 S rRNA gene and its flanking nucleotides was determined. This sequence differs in two positions from that of the previously reported 5.8 S rRNA. The primary structure of the Artemia 5.8 S rRNA gene, which, unlike in dipteran insects, is shown to contain no insertion sequence, is conserved according to the relatedness of the species compared. The 5.8 S rRNA gene flanking nucleotides, which were sequenced 176 nucleotide pairs upstream and 70 nucleotide pairs downstream from the gene, show no evidence of sequence conservation between evolutionarily diverse species by computer analysis. Direct nucleotide repeats are present within the flanking sequences at both ends of the gene at about the same distance upstream and downstream, which could serve as processing signals.  相似文献   

14.
Summary We present the sequence of the nuclearencoded ribosomal small-subunit RNA from soybean. The soybean 18S rRNA sequence of 1807 nucleotides (nt) is contained in a gene family of approximately 800 closely related members per haploid genome. This sequence is compared with the ribosomal small-subunit RNAs of maize (1805 nt), yeast (1789 nt),Xenopus (1825 nt), rat (1869 nt), andEscherichia coli (1541 nt). Significant sequence homology is observed among the eukaryotic small-subunit rRNAs examined, and some sequence homology is observed between eukaryotic and prokaryotic small-subunit rRNAs. Conserved regions are found to be interspersed among highly diverged sequences. The significance of these comparisons is evaluated using computer simulation of a random sequence model. A tentative model of the secondary structure of soybean 18S rRNA is presented and discussed in the context of the functions of the various conserved regions within the sequence. On the basis of this model, the short basepaired sequences defining the four structural and functional domains of all 18S rRNAs are seen to be well conserved. The potential roles of other conserved soybean 18S rRNA sequences in protein synthesis are discussed.  相似文献   

15.
Phylogenetic relationships within the group of molting protostomes were reconstructed by comparing the sets of 18S and 28S rRNA gene sequences considered either separately or in combination. The reliability of reconstructions was estimated from the bootstrap indices for major phylogenetic tree nodes and from the degree of congruence of phylogenetic trees obtained by different methods. By either criterion, the phylogenetic trees reconstructed on the basis of both 18 and 28S rRNA gene sequences were better than those based on the 18S or 28S sequences alone. The results of reconstruction are consistent with the phylogenetic hypothesis classifying protostomes into two major clades: molting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, and Crustacea + Hexapoda) and nonmolting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, and Sipuncula). Nematomorphs (Nematomorpha) do not belong to the clade Cephalorhyncha (Priapulida + Kinorhyncha). It is concluded that combined data on the 18S and 28S rRNA gene sequences provide a more reliable basis for phylogenetic inferences.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 590–601.Original Russian Text Copyright © 2005 by Petrov, Vladychenskaya.  相似文献   

16.
高温菌16S rRNA与耐热性关系的初步研究   总被引:3,自引:0,他引:3  
通过对80多种超高温菌的基因组G+C含量,16S rRNA G+C含量进行统计分析,结果显示高温菌耐热性与基因组G+C含量之间没有直接关系,而与16S rRNA G+C含量之间明显存在上正相关。16S rRNA 18 helix的二级结构分析显示高温菌生长温度越高,其16S rRNA热稳定性越高。  相似文献   

17.
通过对80多种超高温菌的基因组G+C含量,16SrRNAG+C含量进行统计分析,结果显示高温菌耐热性与基因组G+C含量之间没有直接关系,而与16SrRNAG+C含量之间明显存在正相关。16SrRNA18helix的二级结构分析显示高温菌生长温度越高,其16SrRNA热稳定性越高。  相似文献   

18.
Current knowledge of the evolutionary relationships amongst the wolf spiders (Araneae: Lycosidae) is based on assessment of morphological similarity or phylogenetic analysis of a small number of taxa. In order to enhance the current understanding of lycosid relationships, phylogenies of 70 lycosid species were reconstructed by parsimony and Bayesian methods using three molecular markers; the mitochondrial genes 12S rRNA, NADH1, and the nuclear gene 28S rRNA. The resultant trees from the mitochondrial markers were used to assess the current taxonomic status of the Lycosidae and to assess the evolutionary history of sheet-web construction in the group. The results suggest that a number of genera are not monophyletic, including Lycosa, Arctosa, Alopecosa, and Artoria. At the subfamilial level, the status of Pardosinae needs to be re-assessed, and the position of a number of genera within their respective subfamilies is in doubt (e.g., Hippasa and Arctosa in Lycosinae and Xerolycosa, Aulonia and Hygrolycosa in Venoniinae). In addition, a major clade of strictly Australasian taxa may require the creation of a new subfamily. The analysis of sheet-web building in Lycosidae revealed that the interpretation of this trait as an ancestral state relies on two factors: (1) an asymmetrical model favoring the loss of sheet-webs and (2) that the suspended silken tube of Pirata is directly descended from sheet-web building. Paralogous copies of the nuclear 28S rRNA gene were sequenced, confounding the interpretation of the phylogenetic analysis and suggesting that a cautionary approach should be taken to the further use of this gene for lycosid phylogenetic analysis.  相似文献   

19.
Siegfried Boehm   《FEBS letters》1987,220(2):283-287
We propose a new model for the secondary structure of the M1 RNA component of E. coli RNase P which is based on significant sequence homologies with parts of the E. coli 16 S rRNA. A large domain of the new model resembles closely the secondary structure of the tRNA binding center of 16 S rRNA. We suggest that this domain of M1 RNA when functioning as a ribozyme binds the mature part of the precursor tRNA.  相似文献   

20.
采用16SrRNA可变区二级结构图形分析,比较了姜氏菌属及几个相关属种可变区二级结构的变化。结果表明,在9个可变区二级结构中茎的长度、环的数目和类型、茎的碱基对、以及环内部碱基均有不同。尤其在V5和V6两个区,这种差别尤为明显。这为姜氏菌属的建立提供了又一个证据,并认为16SrRNA可变区二级结构分析,可以应用于属以上原核生物的分类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号