首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the immunohistochemical expression of androgen receptors (AR) in human vastus lateralis and trapezius muscles and to determine whether long-term strength training and self-administration of androgenic-anabolic steroids are accompanied by changes in AR content. Biopsy samples were taken from eight high-level power-lifters (P), nine high-level power-lifters who used anabolic steroids (PAS) and six untrained subjects (U). Myonuclei and AR were visualised in cross-sections stained with the monoclonal antibody against AR and 4’,6-diamidino-2-phenylindole. The proportion of AR-containing myonuclei per fibre cross-section was higher in the trapezius than in the vastus lateralis (P<0.05). In the trapezius, the proportion of AR-containing myonuclei was higher in P compared to U and in PAS compared to both P and U (P<0.05). On the contrary, in the vastus lateralis, there were no differences in AR content between the three groups. Myonuclear number in both muscles was higher in P compared to U and in PAS compared to both P and U (P<0.05). In conclusion, AR content differs greatly between human neck and limb muscles. Moreover, the regulation of AR-containing myonuclei following training and self-administration of androgenic-anabolic steroids is muscle dependent. Accepted: 15 October 1999  相似文献   

2.
Power-lifters have hypertrophic muscle fibers with fissures seen in cross-sections, called as fiber splitting.Whether this phenomenon is due to real splitting or defective regeneration has not been settled. To elucidate this matter,we have examined biopsies from the trapezius and vastus lateralis of power lifters (P group) and power lifters self-administrating anabolic steroids (PAS group). For this purpose, immunohistochemical staining of serial cross -sections was used. The PAS group had significantly more fibers with fissures than the P group in the vastus lateralis (1.2%±0.95% vs 0.35±0.34, P<0.05) but not in the trapezius muscle (1.7% in both groups). Serial sections revealed that the fibers with fissures changed their profile profoundly over short distances. Some such fibers had a mature staining profile, whereas other fibers indicated recent degeneration and/or regeneration. Activation of satellite cells and formation of aberrant segments were also evident. We conclude that the so-called split fibers are due to defect regeneration. Some fibers with fissures are the results of old events of segmental muscle fiber damage, whereas the others reflect an ongoing process. The normal regenerative process is most likely disturbed in power-lifters by their continuous training with repeated high mechanical stress on the muscles.  相似文献   

3.
Objectives:This study evaluates the effect of post-activation potentiation (PAP) after 5x5s maximal voluntary isometric contractions (activation stimulus, AS) on tensiomyography (TMG) and torque twitch contractile parameters of vastus lateralis (VL) and medialis (VM), respectively. Further, we validated the decomposition of TMG response to separate responses of three fiber types.Methods:15 healthy individuals participated in this study (40% women; age 19±2.3 years). A decomposition of VL TMG response was done after optimal fitting of three exponential curves.Results:We found main effects in contraction time (Tc) for muscle, method and time. Furthermore, we found interactions between muscle*method, method*time and muscle*method*time. Compared to PRE AS, we found shorter TMG Tc in VL and VM during the first two minutes after AS. Torque Tc remained unchanged in VL, while it increased in VM within 30 seconds after AS. A decomposition of VL TMG response confirmed PAP effects being present only in decomposed type IIb muscle fibers.Conclusion:The TMG is a sensitive method to detect PAP effects with a sensor mounted directly above the muscle belly. After the decomposition of the TMG signal to three separate muscle fiber phenotypes, we provided a non-invasive insight in the contribution of each muscle fiber phenotype to the PAP of the whole muscle.  相似文献   

4.
In a skeletal muscle fiber, each myonucleus is responsible for gene expression in its surrounding cytoplasm. The region of cytoplasm associated with an individual myonucleus is termed myonuclear domain. However, little is known about domain size variation within individual muscle fibers. This study tests the hypothesis that myonuclear domains expressing neonatal myosin within end regions of maturing fibers will be smaller than domains elsewhere in the fibers. The model used is chicken pectoralis, where we have previously shown that during development repression of neonatal myosin radiates from the central region towards the fiber ends. Samples excised from birds aged nine through to 115 days after hatching were sectioned transversely. Using computer image analysis and immunocytochemistry, fiber profiles were classified as neonatal, transforming or adult. Each profile was also located in an adjacent dystrophin-labelled section, where myonuclei were visualized using haematoxylin and bisbenzamide. Variation in myonuclear length with age was not found to be significant (p = 0.925). Myonuclei were counted, and formulae used to calculate mean myonuclear domain size for each profile type. Myonuclear number/mm fiber was calculated to be adult (mean = 108.57 myonuclei/mm), transforming (65.82) and neonatal (25.23). Transforming profiles had significantly (p=0.027) more myonuclei/mm than neonatal, as did adult (p=0.005). Volume of cytoplasm/myonucleus was adult (mean = 16,132 microm3/myonucleus), transforming (12,899) and neonatal (8,130). Transforming and adult profiles had significantly (p<0.001) larger myonuclear domains than did neonatal profiles. Transforming and adult profiles did not differ in either myonuclei/mm (p=0.302) or volume of cytoplasm/myonucleus (p=0.413). This study demonstrates smaller domains at the terminal tips of maturing muscle fibers.  相似文献   

5.
Presently applied methods to identify and quantify human satellite cells (SCs) give discrepant results. We introduce a new immunofluorescence method that simultaneously monitors two SC markers (NCAM and Pax7), the basal lamina and nuclei. Biopsies from power-lifters, power-lifters using anabolic substances and untrained subjects were re-examined. Significantly different results from those with staining for NCAM and nuclei were observed. There were three subtypes of SCs; NCAM+/Pax7+ (94%), NCAM+/Pax7 (4%) and NCAM/Pax7+ (1%) but large individual variability existed. The proportion of SCs per nuclei within the basal lamina of myofibres (SC/N) was similar for all groups reflecting a balance between the number of SCs and myonuclei to maintain homeostasis. We emphasise that it is important to quantify both SC/N and the number of SCs per fibre. Our multiple marker method is more reliable for SC identification and quantification and can be used to evaluate other markers of muscle progenitor cells.  相似文献   

6.
The effects of short-term (4 days) and long-term (60 days) neuromuscular inactivity on myonuclear number, size, and myosin heavy chain (MHC) composition of isolated rat soleus fibers were determined using confocal microscopy and gel electrophoresis. Inactivity was produced via spinal cord isolation (SI), i.e., complete spinal cord transections at a midthoracic and a high sacral level and bilateral deafferentation between the transection sites. Compared with control, there was an increase in the percentage of fibers containing the faster MHC isoforms after 60, but not 4, days of SI. The mean sizes of type I and type I+IIa fibers were 41 and 27% and 66 and 56% smaller after 4 and 60 days of SI, respectively. Thus atrophy occurred earlier than the shift in myosin heavy chain (MHC) profile. The number of myonuclei was approximately 30% higher in type I than type I+IIa fibers in control soleus, but after 60 days of SI these values were similar. The number of myonuclei per millimeter in type I fibers was significantly lower than control after 60 days of SI, whereas there was no change in type I+IIa fibers. Thus myonuclei were eliminated from fibers containing only type I MHC. Because the magnitude of the loss of myonuclei was less than the level of atrophy, the myonuclear domains of both type I and type I+IIa fibers were significantly lower than control. Thus chronic (60 days) inactivity results in smaller, faster fibers that contain a higher than normal amount of DNA per unit of cytoplasm. The absence of activation of muscle fibers that are normally the most active (pure type I fibers) resulted in most, but not all, fibers expressing some fast MHC isoforms. The results also indicate that a loss of myonuclei is not a prerequisite for sustained muscle fiber atrophy.  相似文献   

7.
The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained morphological changes in human skeletal muscle, leading to physical performance enhancement.  相似文献   

8.
Effects of mechanical over-loading on the characteristics of regenerating or normal soleus muscle fibers were studied in dystrophin-deficient (mdx) and wild type (WT) mice. Damage was also induced in WT mice by injection of cardiotoxin (CTX) into soleus muscle. Over-loading was applied for 14 days to the left soleus muscle in mdx and intact and CTX-injected WT mouse muscles by ablation of the distal tendons of plantaris and gastrocnemius muscles. All of the myonuclei in normal muscle of WT mice were distributed at the peripheral region. But, central myonuclei were noted in all fibers of WT mice regenerating from CTX-injection-related injury. Further, many fibers of mdx mice possessed central myonuclei and the distribution of such fibers was increased in response to over-loading, suggesting a shift of myonuclei from peripheral to central region. Approximately 1.4% branched fibers were seen in the intact muscle of mdx mice, although these fibers were not detected in WT mice. The percentage of these fibers in mdx, not in WT, mice was increased by over-loading (~51.2%). The fiber CSA in normal WT mice was increased by over-loading (p<0.05), but not in mdx and CTX-injected WT mice. It was suggested that compensatory hypertrophy is induced in normal muscle fibers of WT mice following functional over-loading. But, it was also indicated that muscle fibers in mdx mice are susceptible to mechanical over-loading and fiber splitting and shift of myonuclei from peripheral to central region are induced.  相似文献   

9.
The effects of increased functional loading on early cellular regenerative events after exercise-induced injury in adult skeletal muscle were examined with the use of in vivo labeling of replicating myofiber nuclei and immunocyto- and histochemical techniques. Satellite cell proliferation in the soleus (Sol) of nonexercised rats (0.4 +/- 0.2% of fibers) was unchanged after an initial bout of declined treadmill exercise but was elevated after two (1.0 +/- 0.2%, P < or = 0.01), but not four or seven, daily bouts of the same task. Myonuclei produced over the 7-day period comprised 0.9-1.9% of myonuclei in isolated fibers of Sol, tibialis anterior, and vastus intermedius of nonexercised rats. The accretion of new myonuclei was enhanced (P < or = 0.05) in Sol and vastus intermedius by the initial exercise followed by normal activity (to 3.1-3.4% of myonuclei) and more so by continued daily exercise (4.2-5.3%). Observed coincident with a lower incidence of histological fiber injury and unchanged fiber diameter and myonuclei per millimeter, the greater new myonuclear accretion induced by continued muscle loading may contribute to an enhanced fiber repair and regeneration after exercise-induced injury.  相似文献   

10.
An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca(2+) sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells.  相似文献   

11.
In literature, an inconsistency exists in the submaximal exercise intensity at which type II fibers are activated. In the present study, the recruitment of type I and II fibers was investigated from the very beginning and throughout a 45-min cycle exercise at 75% of the maximal oxygen uptake, which corresponded to 38% of the maximal dynamic muscle force. Biopsies of the vastus lateralis muscle were taken from six subjects at rest and during the exercise, two at each time point. From the first biopsy single fibers were isolated and characterized as type I and II, and phosphocreatine-to-creatine (PCr/Cr) ratios and periodic acid-Schiff (PAS) stain intensities were measured. Cross sections were cut from the second biopsy, individual fibers were characterized as type I and II, and PAS stain intensities were measured. A decline in PCr/Cr ratio and in PAS stain intensity was used as indication of fiber recruitment. Within 1 min of exercise both type I and, although to a lesser extent, type II fibers were recruited. Furthermore, the PCr/Cr ratio revealed that the same proportion of fibers was recruited during the whole 45 min of exercise, indicating a rather constant recruitment. The PAS staining, however, proved inadequate to fully demonstrate fiber recruitment even after 45 min of exercise. We conclude that during cycling exercise a greater proportion of type II fibers is recruited than previously reported for isometric contractions, probably because of the dynamic character of the exercise. Furthermore, the PCr/Cr ratio method is more sensitive in determining fiber activation than the PAS stain intensity method.  相似文献   

12.
Essential role of satellite cells in the growth of rat soleus muscle fibers   总被引:1,自引:0,他引:1  
Effects of gravitational loading or unloading on the growth-associated increase in the cross-sectional area and length of fibers, as well as the total fiber number, in soleus muscle were studied in rats. Furthermore, the roles of satellite cells and myonuclei in growth of these properties were also investigated. The hindlimb unloading by tail suspension was performed in newborn rats from postnatal day 4 to month 3 with or without 3-mo reloading. The morphological properties were measured in whole muscle and/or single fibers sampled from tendon to tendon. Growth-associated increases of soleus weight and fiber cross-sectional area in the unloaded group were approximately 68% and 69% less than the age-matched controls. However, the increases of number and length of fibers were not influenced by unloading. Growth-related increases of the number of quiescent satellite cells and myonuclei were inhibited by unloading. And the growth-related decrease of mitotically active satellite cells, seen even in controls (20%, P > 0.05), was also stimulated (80%). The increase of myonuclei during 3-mo unloading was only 40 times vs. 92 times in controls. Inhibited increase of myonuclear number was not related to apoptosis. The size of myonuclear domain in the unloaded group was less and that of single nuclei, which was decreased by growth, was larger than controls. However, all of these parameters, inhibited by unloading, were increased toward the control levels generally by reloading. It is suggested that the satellite cell-related stimulation in response to gravitational loading plays an essential role in the cross-sectional growth of soleus muscle fibers.  相似文献   

13.
It has become increasingly recognized that skeletal muscle dysfunction is common in patients with chronic obstructive pulmonary disease (COPD). Muscle strength and endurance are decreased, whereas muscle fatigability is increased. There is a reduced proportion of type I fibers and an increase in type II fibers. Muscle atrophy occurs with a reduction in fiber cross-sectional area. Oxidative enzyme activity is decreased, and measurement of muscle bioenergetics during exercise reveals a reduced aerobic capacity. Deconditioning is probably very important mechanistically. Other mechanisms that may be of varying importance in individual patients include chronic hypercapnia and/or hypoxia, nutritional depletion, steroid usage, and oxidative stress. Potential therapies include exercise training, oxygen supplementation, nutritional repletion, and administration of anabolic hormones.  相似文献   

14.
Human skeletal muscle fibers seem to share most of the same interrelationships among myosin ATPase activity, myosin heavy chain (MHC) phenotype, mitochondrial enzyme activities, glycolytic enzyme activities and cross-sectional area (CSA) as found in rat, cat and other species. One difference seems to be that fast fibers with high mitochondrial content occur less frequently in humans than in the rat or cat. Recently we have reported that the type of MHC expressed and the size of the muscle fibers in humans that have spent 11 days in space change significantly. Specifically, about 8% more fibers express fast MHCs and all phenotypes atrophy in the vastus lateralis (VL) post compared to preflight. In the present paper we examine the relationships among the population of myonuclei, MHC type and CSA of single human muscle fibers before and after spaceflight. These are the first data that define the relationship among the types of MHC expressed, myonuclei number and myonuclei domain of single fibers in human muscle. We then compare these data to similar measures in the cat. In addition, the maximal torque that can be generated by the knee extensors and their fatigability before and after spaceflight are examined. These data provide some indication of the potential physiological consequences of the muscle adaptations that occur in humans in response to spaceflight.  相似文献   

15.
J Kucera  J M Walro 《Histochemistry》1989,92(4):291-299
The expression of four myosin heavy chain (MHC) isoforms, avian slow-tonic (ATO) or neonatal-twitch (ANT) and mammalian slow-twitch (MST) or fast-twitch (MFT) in intrafusal fibers was examined by immunocytochemistry of spindles in the tenuissimus muscle of adult cats. The predominant MHCs expressed by nuclear bag fibers were ATO and MST, whereas the MHCs prevalent in nuclear chain fibers were ANT and MFT. The expression of these isoforms of MHC was not uniform along the length of intrafusal fibers. In general, both bag and chain fibers expressed avian MHC in the intracapsular region and mammalian MHC in the extracapsular region. The nonuniform expression of MHCs observed along the length of bag and chain fibers implies that different genes are activated in myonuclei located in the intracapsular and extracapsular regions of the same muscle fiber. Regional differences in gene activation might result from a greater effect of afferents on myonuclei located near the equator of intrafusal fibers then on myonuclei outside the spindle capsule.  相似文献   

16.
17.
In mouse chimaeras, individual skeletal muscle fibers typically contain populations of myonuclei derived from both cell lines. This 'mosaic' circumstance has provided an opportunity to investigate directly whether the mammalian myofiber syncytium is functionally subdivided into territories, each preferentially influenced by products encoded by the local myonucleus, or whether the multiple nuclei direct the synthesis of products that achieve a uniform distribution throughout the fiber. Chimaeras were produced in which one cell line was derived from an embryo homozygous for gpi-1a, whereas the other was homozygous for the gpi-1b; each allele specifies electrophoretically distinguishable isozymes of the cytosolic enzyme glucosephosphate isomerase (GPI-1). Microtechniques capable of measuring the proportion of each isozyme expressed within small samples of individual muscle fibers have been established, permitting the comparison of the relative quantitative distributions of the GPI-1 isozyme types along the length of individual chimaera fibers. From individual mosaic fibers, all samples yielded identical isozyme profiles, demonstrating that GPI-1 is not sequestered adjacent to the nucleus directing its synthesis; rather, it achieves a homogeneous distribution throughout the mosaic syncytium. The GPI-1 gene locus encodes only the GPI-1 monomer, whereas the functional enzyme detected in our analysis is a dimer that results from the aggregation of monomers in the cytoplasm. The quantitative distribution of dimer types within each mosaic fiber was consistent with random aggregation amongst all monomers represented in the final isozyme pattern, a result requiring that monomers or earlier precursors were mixed in the myofiber cytoplasm prior to assembly of the enzymatically active dimer. Thus, both the final distribution of enzyme dimers within fibers and the patterns of monomer aggregation suggest that there are no subdivisions related to the spatial separation of the genotypically distinct myonuclei within mosaic muscle fibers.  相似文献   

18.
In the present study the sexually dimorphic, androgen-sensitive flexor carpi radialis muscle (FCR) in male Xenopus laevis was viewed repeatedly in vivo to assess the influence of testosterone on muscle fiber size over a period of up to 12 weeks. Regions of the muscle innervated by different spinal nerves responded differently to testosterone treatment. Muscle fibers innervated by spinal nerve 2 (SN2) hypertrophied within 7 days in frogs that had been castrated and given testosterone-filled implants. This initial hypertrophy was followed by a return to normal fiber size a week late, after which fiber size slowly increased again. In castrated males with empty implants, muscle fibers innervated by SN2 gradually atrophied. Fibers innervated by spinal nerve 3 (SN3) were not affected by androgen replacement or withdrawal. The sartorius, a control muscle that is neither sexually dimorphic nor particularly androgen sensitive, was also unaffected. The in vivo observations were confirmed by measurements of muscle fiber cross-sectional areas in frozen sections of whole forelimbs. At 8 and 12 weeks after castration, cross-sectional areas of fibers innervated by SN2 were significantly larger in frogs provided with testosterone than in castrates without testosterone. No difference was found in the SN2 region or in the anconeus caput scapulare (triceps), another control muscle. Immunocytochemistry employing an antibody against the androgen receptor (AR) indicated that the receptor is present in myonuclei of all muscles of the forelimb. While no difference in labeling intensity was detected, the number of AR-containing nuclei per muscle fiber cross-section was higher in fibers innervated by SN2 than in those innervated by SN3, and was yet lower in the triceps. This suggests that regulation of androgen sensitivity may occur via muscle fiber. ARs, although an influence of the nerve may also contribute. 1994 John Wiley & Sons, Inc.  相似文献   

19.
Muscle fibers are the cells in the body with the largest volume, and they have multiple nuclei serving different domains of cytoplasm. A large body of previous literature has suggested that atrophy induced by hindlimb suspension leads to a loss of "excessive" myonuclei by apoptosis. We demonstrate here that atrophy induced by hindlimb suspension does not lead to loss of myonuclei despite a strong increase in apoptotic activity of other types of nuclei within the muscle tissue. Thus hindlimb suspension turns out to be similar to other atrophy models such as denervation, nerve impulse block, and antagonist ablation. We discuss how the different outcome of various studies can be attributed to difficulties in separating myonuclei from other nuclei, and to systematic differences in passive properties between normal and unloaded muscles. During reload, after hindlimb suspension, a radial regrowth is observed, which has been believed to be accompanied by recruitment of new myonuclei from satellite cells. The lack of nuclear loss during unloading, however, puts these findings into question. We observed that reload led to an increase in cross sectional area of 59%, and fiber size was completely restored to the presuspension levels. Despite this notable growth there was no increase in the number of myonuclei. Thus radial regrowth seems to differ from de novo hypertrophy in that nuclei are only added during the latter. We speculate that the number of myonuclei might reflect the largest size the muscle fibers have had in its previous history.  相似文献   

20.
It is hypothesized that repeated recruitment of low-threshold motor units is an underlying cause of chronic pain in trapezius myalgia. This study investigated the distribution of satellite cells (SCs), myonuclei, and macrophages in muscle biopsies from the trapezius muscle of 42 women performing repetitive manual work, diagnosed with trapezius myalgia (MYA; 44 ± 8 yr; mean ± SD) and 20 matched healthy controls (CON; 45 ± 9 yr). Our hypothesis was that muscle of MYA, in particular type I fibers, would demonstrate higher numbers of SCs, myonuclei, and macrophages compared with CON. SCs were identified on muscle cross sections by combined immunohistochemical staining for Pax7, type I myosin, and laminin, allowing the number of SCs associated with type I and II fibers to be determined. We observed a pattern of SC distribution in MYA previously only reported for individuals above 70 yr of age. Compared with CON, MYA demonstrated 19% more SCs per fiber associated with type I fibers (MYA 0.098 ± 0.039 vs. CON 0.079 ± 0.031; P < 0.05) and 40% fewer SCs associated with type II fibers (MYA 0.047 ± 0.017 vs. CON 0.066 ± 0.035; P < 0.05). The finding of similar numbers of macrophages between the two groups was not in line with our hypothesis and suggests that the elevated SC content of MYA was not due to heightened inflammatory cell contents, but rather to provide new myonuclei. The findings of greater numbers of SCs in type I fibers of muscle subjected to repeated low-intensity work support our hypothesis and provide new insight into stimuli capable of regulating SC content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号