首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Development of sequence-specific DNA-binding drugs is an important pharmacological goal, given the fact that numerous existing DNA-directed chemotherapeutic drugs rely on the strength and selectivity of their DNA interactions for therapeutic activity. Among the DNA-binding antibiotics, hairpin polyamides represent the only class of small molecules that can practically bind any predetermined DNA sequence. DNA recognition by these ligands depends on their side-by-side amino acid pairings in the DNA minor groove. Extensive studies have revealed that these molecules show extremely high affinity for sequence-directed, minor groove interaction. However, the specificity of such interactions in the presence of a large selection of sequences such as the human genome is not known. We used the combinatorial selection method restriction endonuclease protection, selection, and amplification (REPSA) to determine the DNA binding specificity of two hairpin polyamides, ImPyPyPy-gamma-PyPyPyPy-beta-Dp and ImPyPyPy-gamma-ImPyPyPy-beta-Dp, in the presence of more than 134 million different sequences. These were verified by restriction endonuclease protection assays and DNase I footprinting analysis. Our data showed that both hairpin polyamides preferentially selected DNA sequences having consensus recognition sites as defined by the Dervan pairing rules. These consensus sequences were rather degenerate, as expected, given that the stacked pyrrole-pyrrole amino acid pairs present in both polyamides are unable to discriminate between A.T and T.A base pairs. However, no individual sequence within these degenerate consensus sequences was preferentially selected by REPSA, indicating that these hairpin polyamides are truly consensus-specific DNA-binding ligands. We also discovered a preference for overlapping consensus binding sites among the sequences selected by the hairpin polyamide ImPyPyPy-gamma-PyPyPyPy-beta-Dp, and confirmed by DNase I footprinting that these complex sites provide higher binding affinity. These data suggest that multiple hairpin polyamides can cooperatively bind to their highest-affinity sites.  相似文献   

3.
Alkylating agents are generally highly reactive with DNA but demonstrate limited DNA sequence selectivity. In contrast, synthetic pyrrole-imidazole polyamides recognize specific DNA sequences with high affinity but are unable to permanently damage DNA. An eight-ring hairpin polyamide conjugated to the alkylating moiety cyclopropylpyrroloindole, related to the natural product CC-1065, affords a conjugate 1-CBI (polyamide 1-CBI (1-(chloromethyl)-5-hydroxyl-1,2-dihydro-3H-benz[e]indole) conjugate), which binds to specific sequences in the minor groove of DNA and alkylates a single adenine flanking the polyamide binding site. In this study, we show that 1-CBI alkylates DNA in both plasmid and intracellular minichromosomal form and inhibits DNA replication under both cell-free and cellular conditions. In addition, it inhibits cell growth and arrests cells in the G2/M phase of the cell cycle.  相似文献   

4.
5.
The DNA minor groove is an attractive target for the design and development of molecules able to specifically recognize predetermined DNA sequences. The pyrrole-amide skeleton of distamycin A has been also used as DNA sequence selective vehicle for the delivery of alkylating functions to DNA targets. Selectivity for specific sequences may be of particular importance in affecting the activity of regulatory genes (oncogenes and tumor suppressor genes). Recent work on a number of hybrid compounds, in which known antitumor compounds or simple active moieties of known antitumor agents have been tethered to distamycin frame or hairpin polyamides derived from distamycin, is reviewed. The DNA alkylating and growth inhibition activities against several tumor cell lines are reported and discussed in terms of their structural differences in relation to both the number of N-methyl pyrrolic rings and the type of the alkylating unit tethered to the oligopyrrolic frame.  相似文献   

6.

Background  

Copper nucleases as a famous class of artificial metallonucleases have attracted considerable interest in relation to their diverse potentials not only as therapeutic agents but also in genomic researches. Copper nucleases present high efficient oxidative cleavage of DNA, in which DNA strand scission occurs generally after hydrogen atom abstracted from a sugar moiety. In order to achieve the selective cleavage of DNA sequences by copper nucleases, the DNA specific recognition agents of the Dervan-type hairpin and cyclic polyamides can be considered as proper carriers of copper nucleases. Investigation of the DNA cleavage selectivity of copper nucleases assisted by the hairpin and cyclic polyamides at the molecular level has not yet been elucidated.  相似文献   

7.
Hairpin pyrrole–imidazole (Py-Im) polyamides are promising medium-sized molecules that bind sequence-specifically to the minor groove of B-form DNA. Here, we synthesized a series of hairpin Py-Im polyamides and explored their binding affinities and orientation preferences to methylated DNA with the mCGG target sequence. Thermal denaturation assays revealed that the five hairpin Py-Im polyamides, which were anticipated to recognize mCGG in a forward orientation, bind to nontarget DNA, GGmC, in a reverse orientation. Therefore, we designed five Py-Im polyamides that could recognize mCGG in a reverse orientation. We found that the two Py-Im polyamides containing Im/β pairs preferentially bound to mCGG in a reverse orientation. The reverse binding Py-Im polyamide successfully inhibited TET1 binding on the methylated DNA. Taken together, this study illustrated the importance of designing reverse binding Py-Im polyamides for the target sequence, mCGG, which paved the way for Py-Im polyamides that can be used with otherwise difficult to access DNA with CG sequences.  相似文献   

8.
9.
10.
Alpha-diaminobutyric acid-linked hairpin polyamides   总被引:1,自引:0,他引:1  
A hairpin polyamide-chlorambucil conjugate linked by alpha-diaminobutyric acid (alpha-DABA) has been shown to have interesting biological properties in cellular and small animal models. Remarkably, this new class of hairpin polyamides has not been previously characterized with regard to energetics and sequence specificity. Herein we present a series of pyrrole-imidazole hairpin polyamides linked by alpha-DABA and compare them to polyamides containing the standard gamma-DABA turn unit. The alpha-DABA hairpins have overall decreased binding affinities. However, alpha-DABA polyamide-chlorambucil conjugates are sequence-specific DNA alkylators with increased specificities. Affinity cleavage studies of alpha-DABA polyamide-EDTA conjugates confirmed their preference for binding DNA in a forward hairpin conformation. In contrast, an unsubstituted glycine-linked polyamide prefers to bind in an extended binding mode. Thus, substitution on the turn unit locks the alpha-DABA polyamide into the forward hairpin binding motif.  相似文献   

11.
Hairpin polyamides selectively recognize predetermined DNA sequences with affinities comparable to naturally occurring proteins. Internal side-by-side pairs of unsymmetrical aromatic rings within the minor groove of DNA distinguish each of the four Watson-Crick base pairs. In contrast, N-terminal ring pairs exhibit less specificity, with the exception of Im/Py targeting G.C base pairs. In an effort to explore the sequence specificity of new ring pairs, a series of hairpin polyamides containing 3-substituted-thiophene-2-carboxamide residues at the N-terminus was synthesized. An N-terminal 3-methoxy (or 3-chloro) thiophene residue paired opposite Py displayed 6- (and 3-) fold selectivity for T.A relative to A.T base pair, while disfavoring G,C base pairs by >200-fold. Our data suggests shape selective recognition with projection of the 3-thiophene substituent (methoxy or chloro) to the floor of the minor groove.  相似文献   

12.
Human estrogen-related receptor 2 (hERR2, ESRRB, ERRbeta, NR3B2) belongs to a class of nuclear receptors that bind DNA through sequence-specific interactions with a 5'-AGGTCA-3' estrogen response element (ERE) half-site in the major groove and an upstream 5'-TNA-3' site in the minor groove. This minor groove interaction is mediated by a C-terminal extension (CTE) of the DNA binding domain and is unique to the estrogen-related receptors. We have used synthetic pyrrole-imidazole polyamides, which bind specific sequences in the minor groove, to demonstrate that DNA binding by hERR2 is sensitive to the presence of polyamides in both the upstream minor groove CTE site and the minor groove of the ERE half-site. Thus, polyamides can inhibit hERR2 by two mechanisms, by direct steric blockage of minor groove DNA contacts mediated by the CTE and by changing the helical geometry of DNA such that major groove interactions are weakened. To confirm the generality of the latter approach, we show that the dimeric human estrogen receptor alpha (hERalpha, ESR1, NR3A1), which binds in the major groove of the ERE, can be inhibited by a polyamide bound in the opposing minor groove of the ERE. These results highlight two mechanisms for inhibition of protein-DNA interactions and extend the repertoire of DNA recognition motifs that can be inhibited by polyamides. These molecules may thus be useful for controlling expression of hERR2- or hERalpha-responsive genes.  相似文献   

13.
N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides are small organic molecules that bind to DNA with sequence specificity and can be used as synthetic DNA-binding ligands. In this study, five hairpin eight-ring Py–Im polyamides 1–5 with different number of Im rings were synthesized, and their binding behaviour was investigated with surface plasmon resonance assay. It was found that association rate (ka) of the Py–Im polyamides with their target DNA decreased with the number of Im in the Py–Im polyamides. The structures of four-ring Py–Im polyamides derived from density functional theory revealed that the dihedral angle of the Py amide carbonyl is 14∼18°, whereas that of the Im is significantly smaller. As the minor groove of DNA has a helical structure, planar Py–Im polyamides need to change their conformation to fit it upon binding to the minor groove. The data explain that an increase in planarity of Py–Im polyamide induced by the incorporation of Im reduces the association rate of Py–Im polyamides. This fundamental knowledge of the binding of Py–Im polyamides to DNA will facilitate the design of hairpin Py–Im polyamides as synthetic DNA-binding modules.  相似文献   

14.
Hairpin polyamides are synthetic oligomers, which fold and bind to specific DNA sequences in a programmable manner. Internal side-by-side pairings of the aromatic amino acid residues 1-methyl-1H-pyrrole (Py), 1-methyl-1H-imidazole (Im), and 3-hydroxy-1-methyl-1H-pyrrole (Hp) confer the ability to distinguish between all four Watson-Crick base pairs in the minor groove of B-form DNA. In a broad search to expand the heterocycle repertoire, we found that when 3-methylthiophene (Tn), which presents a S-atom to the minor groove, is paired with Py, it exhibits a modest threefold specificity for TA>AT presumably by shape-selective recognition. In this study, we explore the scope and limitations of this lead by incorporating multiple Tn residues within a single hairpin polyamide. It was found that hairpin polyamides containing more that one Tn/Py pair exhibit lowered affinities and specificities for their match sites. It appears that little deviation is permissible from the parent five-membered ring 1-methyl-1H-pyrrole-2-carboxamide scaffold for DNA recognition.  相似文献   

15.
The retroviral integrase (IN) carries out the integration of the viral DNA into the host genome. Both IN and the DNA sequences at the viral long-terminal repeat (LTR) are required for the integration function. In this report, a series of minor groove binding hairpin polyamides targeting sequences within terminal inverted repeats of the Moloney murine leukemia virus (M-MuLV) LTR were synthesized, and their effects on integration were analyzed. Using cell-free in vitro integration assays, polyamides targeting the conserved CA dinucleotide with cognate sites closest to the terminal base pairs were effective at blocking 3' processing but not strand transfer. Polyamides which efficiently inhibited 3' processing and strand transfer targeted the LTR sequences through position 9. Polyamides that inhibited integration were effective at nanomolar concentrations and showed subnanomolar affinity for their cognate LTR sites. These studies highlight the role of minor groove interactions within the LTR termini for retroviral integration.  相似文献   

16.
Control of the energetics and specificity of DNA binding polyamides is necessary for inhibition of protein-DNA complex formation and gene regulation studies. Typically, solid-phase methods using Boc monomers for synthesis have depended on Boc-beta-Ala-PAM resin which affords a beta-alanine-Dp tail at the C-terminus, after cleavage with N,N-dimethylaminopropylamine (Dp). To address the energetic consequences of this tail for DNA minor groove binding, we describe an alternative solid phase method employing the Kaiser oxime resin which allows the synthesis of polyamides with incrementally shortened C-terminal tails. Polyamides without Dp and having methyl amide tails rather than beta-alanine show similar affinity relative to the standard beta-Dp tail. The truncated tail diminishes the A,T base pair energetic preference of the beta-Dp tail which will allow a greater variety of DNA sequences to be targeted by hairpin polyamides.  相似文献   

17.
The discrimination between hairpin DNA and coil DNA has been well achieved through polyamides as probes by electrospray ionization (ESI) mass spectrometry. ESI mass spectra showed that polyamides bind to hairpin DNA with high selectivity, and almost no binding with coil DNA. In addition, the noncovalent interaction between polyamides and hairpin DNA was also studied; the results show that hairpin DNA with longer stem and polyamides with more heterocycles have higher binding affinity and stability in gas phase.  相似文献   

18.
Nitrogen mustards are commonly used in cancer chemotherapy. They interact with DNA at electronegative sites, primarily forming N7 guanine mono-adducts and interstrand cross-links. Targeting nitrogen mustards to DNA by attachment of a DNA minor groove binding carrier such as the bisbenzimidazoles Hoechst 33258 (pibenzimol) or Hoechst 33342 (HOE) makes it possible to direct DNA alkylation to more specific stretches of DNA. We have performed a detailed molecular analysis of 6-thioguanine resistant clones arising in Chinese hamster AS52 cells after treatment with HOE, in comparison with a mono- and bifunctional pair of bisbenzimidazole-targeted nitrogen mustards (MGBs). HOE showed no significant ability to induce 6-thioguanine resistant mutants, possibly because drug-treated cells are highly susceptible to apoptosis within very short times. Neither of the MGBs caused the rapid cell death seen with the bisbenzimidazole. However, both MGBs were weaker mutagens than previously found for undirected mustards in the same system, an effect that we suggest could relate to greater structure-directed binding to less mutable DNA sites in the minor groove. Additionally, the nature of some of the mutants suggested there may be a small component of topo I and/or II-mediated events in the mutagenicity of the MGBs. Both MGBs showed high activity in causing deletion mutations, which may be due to errors in attempted repair of the complex lesions formed by minor groove targeted alkylators.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号