首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified the oncogene and the putative transforming protein of the Parodi-Irgens feline sarcoma virus (PI-FeSV). The PI-FeSV is defective and needs a helper virus for its replication. The v-onc sequences in the PI-FeSV were found to be related to the v-sis sequences of the simian sarcoma virus (SSV). PI-FeSV nonproducer cells express two viral RNAs, a 6.8-and a 3.3-kilobase RNA. The 6.8-kilobase RNA contains gag, sis, and env sequences but lacks the pol gene. The 3.3-kilobase RNA, on the other hand, contains only env sequences. We have detected one feline leukemia virus-related protein product in these cells, namely, a 76-kilodalton protein which contains determinants of the feline leukemia virus gag proteins p15 and p30. The v-sis sequences in the PI-FeSV have been located near the 5' end of the viral genome. Taken together, these results imply that the p76 protein contains both feline leukemia virus gag and sis sequences and probably is the transforming protein of this virus. In contrast, in SSV the sis sequences are located towards the 3' end of the viral genome, and the sis protein is thought to be expressed via a subgenomic RNA. PI-FeSV and SSV therefore use different schemes to express their onc-related sequences. The v-sis sequences in the PI-FeSV contain restriction sites which reflect the different origin of the v-sis sequences in the PI-FeSV and SSV. The homologous oncogenes of the PI-FeSV and SSV thus were transduced by two different retroviruses, feline leukemia virus and the simian sarcoma-associated virus, apparently from the genomes of different species.  相似文献   

2.
Simian sarcoma virus-transformed NIH 3T3 (SSV-NIH 3T3) and SSV-NRK cells secrete a potent growth-promoting activity identical with the platelet-derived growth factor (PDGF) in mitogenic assays. The secreted activity is blocked by anti-PDGF antisera and competes with 125I-PDGF for receptor binding, suggesting that the secreted protein is the transforming protein of SSV, p28v-sis, or its processed product. Secreted p28v-sis appears to stimulate autocrine cell growth of SSV-transformed cells because anti-PDGF antisera block 3H-thymidine incorporation into growing SSV-NIH 3T3 and SSV-NRK cells. SSV-transformed cells have reduced numbers of high-affinity 125I-PDGF receptors; PDGF/p28v-sis receptor was purified from SSV-NIH 3T3 cells and retained active protein tyrosine kinase activity stimulated by PDGF. The rate of tumor growth in athymic nude mice injected with SSV-transformed cells was compared with levels of secreted growth factor activity. The rate of tumor growth in nude mice correlated directly with levels of p28v-sis secreted by SSV-transformed cells.  相似文献   

3.
The v-sis transforming gene encodes the woolly monkey homologue of human platelet-derived growth factor (PDGF) polypeptide 2. After its synthesis on membrane bound polyribosomes, the glycosylated precursor dimerizes in the endoplasmic reticulum and travels through the Golgi apparatus. At the cell periphery, the precursor is processed to yield a dimer structurally analogous to biologically active PDGF. Small amounts of two incompletely processed forms are detectable in tissue culture fluids of simian sarcoma virus (SSV) transformants. However, the vast majority remains cell associated. Thus, this growth factor-related transforming gene product is not a classical secretory protein. These findings define possible cellular locations where the transforming activity of the sis-PDGF-2 protein may be exerted.  相似文献   

4.
In simian sarcoma virus (SSV)-transformed cells (SSV-NRK, SSV-NIH 3T3, and SSV-NP1 cells), the v-sis gene product was synthesized as a 36-kDa glycopolypeptide with one endoglycosidase (Endo) H-sensitive oligosaccharide chain and formed a dimer (p72) with a half-time of less than 5 min. p72 was proteolytically processed to generate sequentially p68 and p58 in the endoplasmic reticulum/Golgi complex, p44 in the post-Golgi complex compartments, and p27 in an endosomal/lysosomal compartment. A portion (20-30%) of p72 and p68 later became Endo H-resistant but Endo F-sensitive. During processing, the v-sis gene products exhibited rapid turnover, possibly in the endoplasmic reticulum and/or Golgi complex. The rate of turnover correlated with the tumorigenicity previously reported in these SSV-transformed cells. All three SSV-transformed cells secreted v-sis gene product (p44). p44 was secreted but remained tightly associated with the cell surface. This novel secretion provided an efficient system for the interaction of p44 with the cell surface platelet-derived growth factor receptor which resulted in the intracellular formation of p27. A fraction of secreted p44 was converted extracellularly to a 27-kDa product (extracellular p27) after a longer time in culture. The identical N-terminal amino acid sequence of p44 and extracellular p27 (H2N-SLGSLSVAEPAMIA) indicated a preferential site (Lys110-Arg111) for the proteolytic processing. The intracellular turnover of the v-sis gene product and its correlation with tumorigenicity as well as the demonstration of mitogenically active intracellular forms of v-sis gene product support the hypothesis of intracellular loop autocrine transformation.  相似文献   

5.
The relationship between platelet-derived growth factor (PDGF) and the proto-oncogene c-sis has been determined by amino acid sequence analysis of PDGF and nucleotide sequence analysis of c-sis genomic clones. The nucleotide sequences of five regions of the human c-sis gene which are homologous to sequences of the transforming region (v-sis) of simian sarcoma virus (SSV) were determined. By alignment of the c-sis and v-sis nucleotide sequences the predicted amino acid sequence of a polypeptide homologous to the putative transforming protein p28sis of SSV was deduced. Both predicted sequences use the same termination codon and additional coding sequences may lie 5' to the homologous regions. Amino acid sequence analysis of the PDGF B chain shows identity to the amino acid sequence predicted from the c-sis sequences over 109 amino acid residues. Polymorphism may exist at two amino acid residues. These results suggest that c-sis encodes a polypeptide precursor of the B chain. A partial amino acid sequence of the PDGF A chain is also described. This chain is 60% homologous to the B chain and cannot be encoded by that part of c-sis which has been sequenced but could be encoded by sequences which lie 5' to the five regions of v-sis homology in c-sis, or at a separate locus.  相似文献   

6.
The v-sis gene encodes chain B of platelet-derived growth factor. However, this gene codes for additional amino acids at both the N terminus and the C terminus of its gene product which are not present in the amino acid sequence of platelet-derived growth factor. We constructed a series of deletion mutants with deletions in the v-sis gene in order to define the C-terminal limit of the v-sis gene product which is required for transformation. Deletion mutants of the v-sis gene which encoded truncated gene products up to 57 residues shorter than the v-siswt gene product were still able to transform cells. The minimal transforming region of the v-sis gene product contained six residues fewer than were present in chain B of platelet-derived growth factor. Only 10 residues, including the sequence Cys-Lys-Cys, separated the smallest transforming gene product from the largest nontransforming gene product. These cysteine residues were also important for dimerization of the v-sis gene product, since all of the nontransforming v-sis deletions were unable to form dimers when they were analyzed under nonreducing conditions. Our results suggest that there is a strong connection between transformation and dimerization.  相似文献   

7.
The v-vis gene encodes p28sis, the transforming protein of simian sarcoma virus. This gene resulted from a fusion of the env gene of simian sarcoma-associated virus and the woolly monkey gene for the B chain of platelet-derived growth factor (PDGF). Previous work has shown that the v-sis gene product undergoes signal sequence cleavage, glycosylation, dimerization, and proteolytic processing to yield a secreted form of the protein. It transport across the endoplasmic reticulum is blocked by the introduction of a charged amino acid residue within the signal sequence, the protein does not dimerize, is not secreted, and is no longer transforming as assayed by focus-forming ability in NIH 3T3 cells. Instead, this mutant protein localizes to the nucleus as demonstrated by both indirect immunofluorescence and cell fractionation. Using a series of deletion mutations, we delimited an amino acid sequence within this protein which is responsible for nuclear localization. This region is completely conserved in the predicted human c-sis protein, although it lies outside of regions required for transformation by the v-sis gene product. This nuclear transport signal is contained within amino acid residues 237 to 255, RVTIRTVRVRRPPKGKHRK. An amino acid sequence containing these residues is capable of directing cytoplasmic v-sis mutant proteins to the nucleus. This sequence is also capable of directing less efficient nuclear transport of a normally cytoplasmic protein, pyruvate kinase. Pulse-chase experiments indicate that the half-lives of nuclear and cytoplasmic v-sis mutant proteins are approximately 35 min. Using the heat-inducible hsp70 promoter from Drosophila melanogaster, we showed that the nuclear v-sis protein accumulates in the nucleus within 30 min of induction. The identification of a nuclear transport signal in the v-sis gene product raises interesting questions regarding the possibility of some function for PDGF or PDGF-related molecules in the nucleus.  相似文献   

8.
The conditioned medium of Simian sarcoma virus (SSV)-transformed NRK cells contains at least two activities that down regulate the epidermal growth factor receptor. To identify these activities, we analyzed the medium for the presence of factors both related to and distinct from the v-sis oncogene product. Fractionation of the conditioned medium from SSV-transformed NRK cells by chromatography on heparin-Sepharose yielded two active fractions capable of inhibiting EGF binding. The first component, which eluted at 0.8 M NaCl, is able to induce autophosphorylation of the platelet-derived growth factor (PDGF) receptor, is a mitogen for Swiss 3T3 cells and corresponds to the PDGF B chain product of the v-sis oncogene. The second component requires 2 M NaCl for elution, is mitogenic for Swiss 3T3 cells and inhibits high affinity EGF binding through a protein kinase C-independent pathway, all properties of basic FGF. These results suggest that the conditioned medium of v-sis-transformed cells contains at least two factors that can act in an autocrine capacity, one derived from v-sis and one corresponding to basic FGF.  相似文献   

9.
Previous studies have indicated that the oncogene v-sis of simian sarcoma virus (SSV) encodes a growth factor that is structurally and functionally similar to platelet-derived growth factor (PDGF). In the present investigation we have analysed the phenotypic characteristics of human foreskin fibroblasts transformed by SSV. It was found that the PDGF receptors were extensively down-regulated. This finding is consistent with a high, local, extracellular concentration of a PDGF-like factor, synthesized by the transformed cell. The receptors were up-regulated by suramin, a drug that is known to dissociate PDGF and the v-sis product from the PDGF receptors. A cell-associated v-sis product of mol. wt 24,000 was identified by immunoprecipitation with PDGF antibodies; release of this component was induced by a high concentration of exogenous PDGF, indicating that a fraction of the product is associated with the PDGF receptors. SSV was not found to be an immortalizing virus; when serially passaged, SSV-transformed cells had essentially the same life-span as their non-transformed counterparts. Moreover, SSV did not induce growth in soft agar beyond the level afforded by exogenously added PDGF. Thus, the present study favors the notion that SSV transformation is mediated by a growth factor that mimics PDGF but has no further cellular effects.  相似文献   

10.
The gene product of the v-sis gene is closely related to the B chain of platelet-derived growth factor (PDGF). However, v-sis also encodes additional amino acids at its N and C termini, which are not represented in the sequence data of PDGF. We have constructed a series of N-terminal deletion mutants in the v-sis gene to define the minimum region required for transformation. These mutants were assayed for biological activity by using retroviral expression vectors which donate a signal sequence, required for translocation across the rough endoplasmic reticulum, to the mutant gene product. The minimal transforming region of the v-sis gene product defined by this analysis has 15 residues missing at the N terminus when compared with the PDGF-B chain. There are only two residues separating the closest transforming and nontransforming gene products. Mutant gene products lacking both the basic dipeptide processing site and the N-linked glycosylation site were found to be biologically active, indicating the dispensability of those processing steps. These results delimit the minimal transforming region of the v-sis gene product to residues 127 through 214, a total of 21 residues smaller than the PDGF-B chain.  相似文献   

11.
The simian sarcoma virus (SSV) oncogene (v-sis) has a high degree of homology to the cellular gene coding for the B peptide of human platelet-derived growth factor (PDGF), a potent fibroblast mitogen. The cellular homolog of v-sis is activated in some mesenchymal human tumors and cell lines derived from them. To determine the phenotype produced by v-sis in diploid human fibroblasts, we constructed plasmids containing the SSV provirus and drug-resistance markers and transfected them into early-passage human cells. Fibroblasts that had integrated the plasmid were selected for drug resistance and shown to contain and express the v-sis oncogene by DNA and RNA hybridization. The v-sis-expressing cells grew to higher saturation densities than control cells transfected with the vector plasmid alone and formed large, well defined foci. This allowed selection of transfectants directly for focus formation. The v-sis transformed cells continued to grow well in the absence of serum, whereas age-matched, vector-transfected control cells ceased replicating under these conditions so that the final difference in density between the two populations was tenfold. Incorporation of thymidine in serum-free medium by the v-sis-transformed cells was independent of exogenous PDGF. In contrast, PDGF increased thymidine incorporation in such medium by the control cells to the level found in the v-sis-transformed cells with or without added PDGF. These results suggest that expression of the v-sis oncogene in diploid human fibroblasts causes sufficient endogenous synthesis of the B chain of PDGF to allow transformants to grow to abnormally high cell densities. When individual v-sis-transformed cells were grown on a background of normal cells, this higher cell density at confluence could be visualized as a focus.  相似文献   

12.
《The Journal of cell biology》1986,103(6):2311-2322
The v-sis gene is able to transform cells by production of a growth factor that is structurally related to platelet-derived growth factor. This growth factor has been detected in the conditioned media of v-sis transformed cells, and is able to stimulate the autophosphorylation of the platelet-derived growth factor receptor. We have used the v-sis gene product to analyze the role of protein-encoded signals in cell surface transport. We constructed several gene fusions that encode transmembrane forms of the v-sis gene product. These membrane-anchored forms of the v-sis gene product are properly folded into a native structure, as indicated by their dimerization, glycosylation, and NH2- terminal proteolytic processing. Indirect immunofluorescence demonstrated that several of these membrane-anchored gene products are transported to the cell surface. Removal of the N-linked glycosylation site from the v-sis gene product did not prevent cell surface transport. Several of these mutant genes are able to induce focus formation in NIH3T3 cells, providing further evidence that the membrane- anchored proteins are properly folded. These results demonstrate that N- linked glycosylation is not required for the cell surface transport of a protein that is in a native, biologically active conformation. These results provide a correlation between cell surface expression of the membrane-anchored v-sis gene products and transformation.  相似文献   

13.
14.
15.
The simian sarcoma virus transforming gene, v-sis, encodes a protein, p28sis , that is closely related to human platelet-derived growth factor (PDGF). The human locus related to v-sis was cloned and shown to contain at least five exons corresponding to the v-sis coding region. Nucleotide sequence analysis of these exons revealed that the predicted amino acid sequence of human c-sis differed by 6% from that of the woolly monkey-derived v-sis. These findings imply that the sis proto-oncogene has been well conserved during primate evolution. By comparison of the known amino acid sequences of PDGF peptides with the predicted human c-sis protein, it was possible to demonstrate that this human proto-oncogene is the structural gene encoding one of the two major polypeptides of this potent mitogen for connective tissue cells.  相似文献   

16.
The protein encoded by v-sis, the oncogene of simian sarcoma virus, is homologous to the B chain of platelet-derived growth factor (PDGF). There are eight conserved Cys residues between PDGF-B and the v-sis protein. Both native PDGF and the v-sis protein occur as disulfide-bonded dimers, probably containing both intramolecular and intermolecular disulfide bonds. Oligonucleotide-directed mutagenesis was used to change the Cys codons to Ser codons in the v-sis gene. Four single mutants lacked detectable biological activity, indicating that Cys-127, Cys-160, Cys-171, and Cys-208 are required for formation of a biologically active v-sis protein. The other four single mutants retained biological activity as determined in transformation assays, indicating that Cys-154, Cys-163, Cys-164, and Cys-210 are dispensable for biological activity. Double and triple mutants containing three of these altered sites were constructed, some of which were transforming as well. The v-sis proteins encoded by biologically active mutants displayed significantly reduced levels of dimeric protein compared with the wild-type v-sis protein, which dimerized very efficiently. Furthermore, a mutant with a termination codon at residue 209 exhibited partial transforming activity. This study thus suggests that the minimal region required for transformation consists of residues 127 to 208. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the v-sis proteins encoded by some of the biologically active mutants exhibited an altered conformation when compared with the wild-type v-sis protein, and suggested that Cys-154 and Cys-163 participate in a nonessential disulfide bond.  相似文献   

17.
The cell surface retention sequence (CRS) binding protein-1 (CRSBP-1) is a newly identified membrane glycoprotein which is hypothesized to be responsible for cell surface retention of the oncogene v-sis and c-sis gene products and other secretory proteins containing CRSs. In simian sarcoma virus-transformed NIH 3T3 cells (SSV-NIH 3T3 cells), a fraction of CRSBP-1 was demonstrated at the cell surface and underwent internalization/recycling as revealed by cell surface 125I labeling and its resistance/sensitivity to trypsin digestion. However, the majority of CRSBP-1 was localized in intracellular compartments as evidenced by the resistance of most of the 35S-metabolically labeled CRSBP-1 to trypsin digestion, and by indirect immunofluorescent staining. CRSBP-1 appeared to form complexes with proteolytically processed forms (generated at and/or after the trans-Golgi network) of the v-sis gene product and with a approximately 140-kDa proteolytically cleaved form of the platelet-derived growth factor (PDGF) beta-type receptor, as demonstrated by metabolic labeling and co-immunoprecipitation. CRSBP-1, like the v-sis gene product and PDGF beta-type receptor, underwent rapid turnover which was blocked in the presence of 100 microM suramin. In normal and other transformed NIH 3T3 cells, CRSBP-1 was relatively stable and did not undergo rapid turnover and internalization/recycling at the cell surface. These results suggest that in SSV-NIH 3T3 cells, CRSBP-1 interacts with and forms ternary and binary complexes with the newly synthesized v-sis gene product and PDGF beta-type receptor at the trans-Golgi network and that the stable binary (CRSBP-1.v-sis gene product) complex is transported to the cell surface where it presents the v-sis gene product to unoccupied PDGF beta-type receptors during internalization/recycling.  相似文献   

18.
Cell surface retention sequence binding protein-1 (CRSBP-1) is a cell surface binding protein for the cell surface retention sequence (CRS) motif of the v-sis gene product (platelet-derived growth factor-BB). It has been shown to be responsible for cell surface retention of the v-sis gene product in v-sis-transformed cells (fibroblasts) and has been hypothesized to play a role in autocrine growth and transformation of these cells. Here we demonstrate that the CRSBP-1 cDNA cloned from bovine liver libraries encodes a 322-residue type I membrane protein containing a 23-residue signal peptide, a 215-residue cell surface domain, a 21-residue transmembrane domain, and a 63-residue cytoplasmic domain. CRSBP-1 expressed in transfected cells is an approximately 120-kDa disulfide-linked homodimeric glycoprotein and exhibits dual ligand (CRS-containing growth regulators (v-sis gene product and insulin-like growth factor binding protein-3, IGFBP-3) and hyaluronic acid) binding activity. CRSBP-1 overexpression (by stable transfection of cells with CRSBP-1 cDNA) enhances autocrine loop signaling, cell growth, and tumorigenicity (in mice) of v-sis-transformed cells. CRSBP-1 expression also enhances autocrine cell growth mediated by IGFBP-3 in human lung carcinoma cells (H1299 cells), which express very little, if any, endogenous CRSBP-1 and exhibits a mitogenic response to exogenous IGFBP-3, stably transfected with IGFBP-3 cDNA. However, CRSBP-1 overexpression does not affect growth of normal and transformed cells that do not produce these CRS-containing growth regulators. These results suggest that CRSBP-1 plays a role in autocrine regulation of cell growth mediated by growth regulators containing CRS.  相似文献   

19.
The v-sis oncogene and its cellular homolog c-sis encode chain B of platelet-derived growth factor. Cells transformed by v-sis produce a platelet-derived growth factor-related molecule which is able to stimulate the platelet-derived growth factor receptor in an autocrine fashion. Site-directed mutagenesis was used to construct several mutations which substitute charged residues for hydrophobic residues in the proposed signal sequence of the v-sis gene product. Two of these mutations resulted in the synthesis of altered v-sis gene products with an unexpected nuclear location and a loss of biological activity. We also report here the intracellular localization of the v-sis gene product to the endoplasmic reticulum-Golgi compartment, where signal sequence cleavage and N-linked glycosylation occur. The v-sis gene product contains no transmembrane regions, as it is completely protected within isolated microsomes from trypsin proteolysis. Site-directed mutagenesis was also used to alter a proposed proteolytic processing site in the v-sis gene product. This mutant v-sis gene, which encodes Asn-Ser in place of Lys-Arg at residues 110 to 111, was found to retain full biological activity.  相似文献   

20.
Transformation of normal rat kidney fibroblasts (NRK) by the simian sarcoma virus (SSV) occurs as a result of expression of p28v-sis, a homologue of platelet-derived growth factor-B chain. Chromatographic separation revealed that the bulk (85%) of the mitogenic activity in SSV-transformed NRK cells was not due to p28v-sis but rather two distinct endothelial cell growth factors that eluted off heparin-Sepharose between 1 and 2 M NaCl. Protein purification and Northern blot analysis revealed that one of these growth factors was the 18 kd form of bFGF, the expression of which was found to increase 15-fold with SSV-transformation of NRK cells. The pure 18 Kd bFGF had no effect on NRK cell growth but was a potent neurotrophic agent for fetal rat cortical neurones and a potent growth factor for fetal bovine heart endothelial cells, suggesting a paracrine but not autocrine role for this protein. The second endothelial cell growth factor activity in SSV-transformed NRK cells was due to an 18 Kd protein which could be distinguished immunologically, biochemically, and mitogenically from bFGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号