首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of nerve growth factor (NGF) in neurotrophic support for the extrinsic innervation of the nasal and oral mucosae was investigated in keratin 14 (K14)-NGF transgenic mice in which NGF was over-expressed in K14-synthesizing cells. K14 immunoreactivity was localized in the epithelial basal cells of the whisker pad skin, the hard palate, the floor of the ventral meatus, and the anterior tongue that are stratified squamous epithelia, and also in basal cells of the vomeronasal, olfactory, and respiratory epithelia that are non-stratified epithelia. In transgenic mice, NGF expression was identified and confined primarily to the basal cells of stratified epithelia. The nasal mucosae including the vomeronasal, olfactory, and respiratory mucosae, and the glands associated with the vomeronasal organ received a greater innervation of protein gene product 9.5-immunoreactive extrinsic fibers in transgenic animals than nontransgenic controls. An increased density of calcitonin gene-related peptide-immunoreactive extrinsic fibers was observed in the nonsensory epithelia of the vomeronasal organ, the olfactory sensory and respiratory epithelia in transgenic animals. Our results indicated that the hyperinnervation of the nasal and oral mucosae by extrinsic neurons is due at least partially to target-derived NGF synthesis and release by K14-expressing basal cells.This work was supported by NIH grants NIDCD-00159 (T.V.G.), NIDCO-01715 (M.L.G.), and NINDS-31826 (K.M.A.).  相似文献   

2.
3.
4.
Although several types of modified stratified squamous epithelia are present in the adult mammal, most are presumably derived from similar embryonic progenitors. Mechanisms responsible for region-specific specialization are poorly understood. To correlate epithelial diversification with the expression of tissue-specific markers, we analyzed keratin protein composition in four representative types of rat squamous epithelia from early embryonic through adult phases of development. Keratin subsets synthesized in palatal mucosa were qualitatively similar, but differed dramatically in relative abundance. Tongue mucosa synthesized a different, but consistent subset of keratins which also changed quantitatively throughout morphogenesis. In contrast, different keratin genes were sequentially expressed during histogenesis of backskin and footpad epidermis. These data indicate that tissue-specific keratin biosynthesis is genetically predetermined early in embryogenesis.  相似文献   

5.
We have characterized the cells that form the human oral epithelia by analyzing their patterns of keratin expression in culture and in transplants. Keratinocytes of all oral regions synthesized high levels of keratins K5/K14 and K6/K16,K17, as expressed by cells of all stratified squamous epithelia in culture. However, cells from different regions varied in their expression in culture of retinoid-inducible (K19 and K13) and simple epithelial (K7, K8 and K18) keratins. By these criteria, all oral cells could be classified as belonging to one of three intrinsically distinct subtypes: "keratinizing" (gingiva, hard palate), "typical nonkeratinizing" (inner cheek, floor of mouth, ventral tongue) and "special non-keratinizing" (soft palate), all of which differed from the epidermal keratinocyte subtype. Cells from fetal floor of mouth expressed a pattern of keratins in culture markedly different from that of adult floor of mouth cells but identical to that of the adult "special nonkeratinizing" subtype and similar to that of several oral squamous cell carcinoma lines. When cultures of oral keratinocytes were grafted to the dermis of nude mice, they formed stratified epithelial structures after 10 days. In some areas of the stratified structures, the basal layer recapitulated the K19 expression pattern of the oral region from which they had originated. Thus, regional differentiation of the oral epithelium is based on an intrinsic specialization of regional keratinocyte stem cells. Additionally, oral cell transformation either frequently involves reversion to the fetal keratin program or else oral cells that express this keratin program are especially susceptible to transformation.  相似文献   

6.
The keratins are a highly heterogeneous group of proteins that form intermediate filaments in a wide variety of epithelial cells. These proteins can be divided into at least seven major classes according to their molecular weight and their immunological reactivity with monoclonal antibodies. Tissue-distribution studies have revealed a correlation between the expression of specific keratin classes and different morphological features of in vivo epithelial differentiation (simple vs. stratified; keratinized vs. nonkeratinized). Specifically, a 50,000- and a 58,000-dalton keratin class were found in all stratified epithelia but not in simple epithelia, and a 56,500- and a 65-67,000-dalton keratin class were found only in keratinized epidermis. To determine whether these keratin classes can serve as markers for identifying epithelial cells in culture, we analyzed cytoskeletal proteins from various cultured human cells by the immunoblot technique using AE1 and AE3 monoclonal antikeratin antibodies. The 56,500- and 65-67,000-dalton keratins were not expressed in any cultured epithelial cells examined so far, reflecting the fact that none of them underwent morphological keratinization. The 50,000- and 58,000-dalton keratin classes were detected in all cultured cells that originated from stratified squamous epithelia, but not in cells that originated from simple epithelia. Furthermore, human epidermal cells growing as a monolayer in low calcium medium continued to express the 50,000- and 58,000-dalton keratin classes. These findings suggest that the 50,000- and 58,000-dalton keratin classes may be regarded as "permanent" markers for stratified squamous epithelial cells (keratinocytes), and that the expression of these keratin markers does not depend on the process of cellular stratification. The selective expression of the 50,000- and 58,000-dalton keratin classes, which are synthesized in large quantities on a per cell basis, may explain the high keratin content of cultured keratinocytes.  相似文献   

7.
Cyst structures were often detected in and around thyroid glands of the dog. The present study revealed the frequency of occurrence, the light microscopic features, and the immunoperoxidase reactions to anti-keratin and anti-19S-thyroglobulin antisera of each cyst located in parathyroid III, parathyroid IV, thymus IV, C-cell complexes, and thyroid parenchyma from 112 dogs. In each location, cysts showed characteristic features. In parathyroid III, the cysts were covered with single or pseudostratified epithelium composed of ciliated cells; whereas in parathyroid IV they were covered with keratinizing stratified squamous epithelium. In C-cell complexes, small cysts lined with small packed cells were predominant, and large cysts lined with single cuboidal cells or stratified squamous cells were also present. In thymus IV located in the close vicinity of parathyroid IV, cyst epithelium consisted of several types of cells showing variable features. In thyroid parenchyma, there were several types of cysts: some were covered with ciliated columnar cells, and others were covered with two or multilayers of small packed cells or cuboidal cells. In spite of these differences in appearance of the cysts located in different tissues, all their epithelia were immunoreactive to the keratin antisera, except for small cysts in C-cell complexes, which were regarded as immature structures. Thus, the presence of keratin filaments in epithelial cells seems to be a characteristic feature of all cysts. The lumens of each cyst contained variable amounts of amorphous materials, which showed colloid-like, flocculent, foamy, and granular features and were periodic acid-Schiff-positive in variable degrees, from weak to intense. Although the lumenal contents of the cysts in parathyroid III revealed no immunoreactivity for 19S-thyroglobulin, those in thyroid parenchyma, C-cell complexes, parathyroid IV, and thymus IV reacted strongly with the 19S-thyroglobulin antiserum.  相似文献   

8.
9.
A synthetic peptide corresponding to a novel protein sequence isolated from bovine kidney was used to immunize rabbits. When applied to Western blots of bovine kidney extracts, antiserum to this peptide recognizes proteins with molecular weights of 23 and 18 KD. Immunohistochemical examination of a variety of bovine and rat tissues with this antiserum revealed a unique distribution of immunoreactivity with the intermediate layers of a variety of stratified epithelia, in addition to renal glomeruli. The pattern of reactivity differed from previously described epithelial markers such as cytokeratins. These results indicate that this antiserum may be useful as a tool for the identification of cells of the intermediate layer of stratified epithelia and, as such, may aid in the study of this differentiating/proliferating tissue compartment.  相似文献   

10.
The superficial layers of the stratified squamous epithelium of the murine vagina undergo transdifferentiation into cuboidal mucinous cells during the proestrus phase of the normal estrous cycle. In contrast to their squamous progenitor cells which have the cytoskeletal characteristics of squamous epithelium, mucinous cells express keratin polypeptides typical of simple nonstratified epithelia. Accordingly, the transdifferentiation of squamous cell into mucinous cells involves not only a change in cell morphology but also a switch in the expression of keratin polypeptides. These data indicate that the stratified squamous cells of the vagina are not terminally differentiated and their phenotype can be hormonally modulated.  相似文献   

11.
Multi-layered ("stratified") epithelia differ from one-layered ("simple") polar epithelia by various architectural and functional properties as well as by their cytoskeletal complements, notably a set of cytokeratins characteristic of stratified tissue. The simple epithelial cytokeratins 8 and 18 have so far not been detected in any stratified epithelium. Using specific monoclonal antibodies we have noted, in several but not all samples of stratified epithelia, including esophagus, tongue, exocervix, and vagina, positive immunocytochemical reactions for cytokeratins 8, 18, and 19 which in some regions were selective for the basal cell layer(s) but extended into suprabasal layers in others. In situ hybridization with different probes (riboprobes, synthetic oligonucleotides) for mRNAs of cytokeratin 8 on esophageal epithelium has shown, in extended regions, relatively strong reactivity for cytokeratin 8 mRNA in the basal cell layer. In contrast, probes to cytokeratin 18 have shown much weaker hybridization which, however, was rather evenly spread over basal and suprabasal strata. These results, which emphasize the importance of in situ hybridization in studies of gene expression in complex tissues, show that the genes encoding simple epithelial cytokeratins can be expressed in stratified epithelia. This suggests that continual expression of genes coding for simple epithelial cytokeratins is compatible with the formation of squamous stratified tissues and can occur, at least in basal cell layers, simultaneously with the synthesis of certain stratification-related cytokeratins. We also emphasize differences of expression and immunoreactivity of these cytokeratins between different samples and in different regions of the same stratified epithelium and discuss the results in relation to changes of cytokeratin expression during fetal development of stratified epithelia, in response to environmental factors and during the formation of squamous cell carcinomas.  相似文献   

12.
 In stratified squamous epithelia a critical balance among cell proliferation, differentiation, and death must be maintained in order for these tissues to fulfill their barrier function. Previous studies have demonstrated that plasminogen activator inhibitor 2 (PAI-2) is a product of differentiating epidermal keratinocytes, suggesting a role for this inhibitor during squamous differentiation. Furthermore, in certain tumor cell lines, overexpression of PAI-2 confers resistance to the induction of programmed cell death, suggesting cytoprotective function(s). In the present study we demonstrate that PAI-2 mRNA and protein are constitutively and uniquely expressed in differentiating cells of murine stratified squamous epithelia, including epidermis, esophagus, vagina, oral mucosa, and tongue. PAI-2 immunohistochemical localization patterns suggest a predominantly cytosolic distribution, consistent with biochemical identification of the major PAI-2 species as a 43-kDa, presumably non-glycosylated protein. Functional analysis shows that the majority of epithelial PAI-2 is active. In contrast to the high levels of PAI-2 expression in stratified squamous epithelia, little or no PAI-2 is detectable in simple epithelia. These findings suggest that epithelial PAI-2 may mediate inhibition of intracellular proteinases associated with events during terminal differentiation and death that are unique to stratified squamous epithelia. Accepted: 29 June 1998  相似文献   

13.
Using immunogold-silver techniques, we have demonstrated that, in rats, type-I (keratinocyte) transglutaminase is expressed primarily in stratified squamous epithelia of the integument, the upper digestive tract, and the lower female genital tract. In these epithelia, the enzyme was found to be present predominantly in the granular layer, but was evident at low levels even in the basal layer, especially in the genital tract. No immunoreactivity was detected in glandular, columnar, or transitional epithelia or in soft tissues. However, considerable enzyme antigenicity was observed in the endometrium and in major ducts of the pancreas and mammary glands of near-term pregnant and early postpartum females. In cultures, substantial immunoreactivity was readily identifiable not only in epidermal, vaginal, and esophageal epithelial cells (immunopositive in vivo), but also in urinary bladder, seminal vesicle, and tracheal epithelial cells (immunonegative in vivo). Primary epithelial outgrowths from bladder and seminal vesicle tissue explants were immunopositive, demonstrating rapid adaptation to the culture environment. These results reveal three distinct levels of regulation of transglutaminase expression in various cell types: during the differentiation of keratinocytes, during pregnancy, being evident principally in the endometrium but detectable elsewhere as well, and during the cultivation of certain epithelia which do not normally express the enzyme in vivo. We conclude that type-I transglutaminase may be a valuable marker for elucidating the regulation of normal epithelial differentiation and squamous metaplasia.  相似文献   

14.
《The Journal of cell biology》1995,129(5):1329-1344
Keratin 5 and keratin 14 have been touted as the hallmarks of the basal keratin networks of all stratified squamous epithelia. Absence of K14 gives rise to epidermolysis bullosa simplex, a human blistering skin disorder involving cytolysis in the basal layer of epidermis. To address the puzzling question of why this disease is primarily manifested in skin rather than other stratified squamous epithelia, we ablated the K14 gene in mice and examined various tissues expressing this gene. We show that a key factor is the presence of another keratin, K15, which was hitherto unappreciated as a basal cell component. We show that the levels of K15 relative to K14 vary dramatically among stratified squamous epithelial tissues, and with neonatal development. In the absence of K14, K15 makes a bona fide, but ultrastructurally distinct, keratin filament network with K5. In the epidermis of neonatal mutant mice, K15 levels are low and do not compensate for the loss of K14. In contrast, the esophagus is unaffected in the neonatal mutant mice, but does appear to be fragile in the adult. Parallel to this phenomenon is that esophageal K14 is expressed at extremely low levels in the neonate, but rises in postnatal development. Finally, despite previous conclusions that the formation of suprabasal keratin filaments might depend upon K5/K14, we find that a wide variety of suprabasal networks composed of different keratins can form in the absence of K14 in the basal layer.  相似文献   

15.
Tissue distribution of keratin 7 as monitored by a monoclonal antibody   总被引:23,自引:0,他引:23  
Monoclonal antibody (RCK 105) directed against keratin 7 was obtained after immunization of BALB/c mice with cytoskeletal preparations from T24 cells and characterized by one- (1D) and two-dimensional (2D) immunoblotting. In cultured epithelial cells, known from gel electrophoretic studies to contain keratin 7, this antibody gives a typical keratin intermediate filament staining pattern, comparable to that obtained with polyclonal rabbit antisera to skin keratins or with other monoclonal antibodies, recognizing for example keratins 5 and 8 or keratin 18. Using RCK 105, the distribution of keratin 7 throughout human epithelial tissues was examined and correlated with expression patterns of other keratins. Keratin 7 was found to occur in the columnar and glandular epithelium of the lung, cervix, breast, in bile ducts, collecting ducts in the kidney and in mesothelium, but to be absent from gastrointestinal epithelium, hepatocytes, proximal and distal tubules of the kidney and myoepithelium. Nor could it be detected in the stratified epithelia of the skin, tongue, esophagus, or cervix but strongly stained all cell layers of the urinary bladder transitional epithelium. When applied to carcinomas derived from these different tissue types it became obvious that an antibody to keratin 7 may allow an immunohistochemical distinction between certain types of adenocarcinomas.  相似文献   

16.
We have prepared three monoclonal antibodies against human epidermal keratins. These antibodies were highly specific for keratins and, in combination, recognized all major epidermal keratins of several mammalian species. We have used these antibodies to study the tissue distribution of epidermis-related keratins. In various mammalian epithelia, the antibodies recognized seven classes of keratins defined by their immunological reactivity and size. The 40, 46 and 52 kilodalton (kd) keratin classes were present in almost all epithelia; the 50 kd and 58 kd keratin classes were detected in all stratified squamous epithelia, but not in any simple epithelia; and the 56 kd and 65-67 kd keratin classes were unique to keratinized epidermis. Thus the expression of specific keratin classes appeared to correlate with different types of epithelial differentiation (simple versus stratified; keratinized versus nonkeratinized).  相似文献   

17.
18.
Abstract. Using immunogold-silver techniques, we have demonstrated that, in rats, type-I (keratinocyte) transglutaminase is expressed primarily in stratified squamous epithelia of the integument, the upper digestive tract, and the lower female genital tract. In these epithelia, the enzyme was found to be present predominantly in the granular layer, but was evident at low levels even in the basal layer, especially in the genital tract. No immunoreactivity was detected in glandular, columnar, or transitional epithelia or in soft tissues. However, considerable enzyme antigenicity was observed in the endometrium and in major ducts of the pancreas and mammary glands of near-term pregnant and early postpartum females. In cultures, substantial immunoreactivity was readily identifiable not only in epidermal, vaginal, and esophageal epithelial cells (immunopositive in vivo), but also in urinary bladder, seminal vesicle, and tracheal epithelial cells (immunonegative in vivo). Primary epithelial outgrowths from bladder and seminal vesicle tissue explants were immunopositive, demonstrating rapid adaptation to the culture environment. These results reveal three distinct levels of regulation of transglutaminase expression in various cell types: (1) during the differentiation of keratinocytes, (2) during pregnancy. being evident principally in the endometrium but detectable elsewhere as well, and (3) during the cultivation of certain epithelia which do not normally express the enzyme in vivo. We conclude that type-I transglutaminase may be a valuable marker for elucidating the regulation of normal epithelial differentiation and squamous metaplasia.  相似文献   

19.
Hamster tracheal epithelial (HTE) cells maintained in primary culture show the induction of specific keratin species under vitamin A-deficient conditions. A comparison was made between the morphology and the expression of keratins in HTE cells in vivo and in primary culture with and without vitamin A. HTE cells cultured in serum-free, vitamin A-supplemented medium formed a simple cuboidal, ciliated monolayer and produced four simple epithelial keratins (7, 8, 18, and 19). In contrast, vitamin A-deficient HTE cells, which were squamous-like and stratified in culture, produced a more complex keratin pattern, with the induction of four additional keratin species (5, 6, 14, and 17). A keratin pair whose expression serves as a marker of stratified epithelia was induced, as well as a single keratin species unique to lesions of squamous metaplasia in vitamin A-deficient hamster tracheal organ cultures. Thus it appears that HTe cells retain the ability to respond to a deficiency in vitamin A through squamous differentiation and increased keratin production when removed from the intact organ and maintained in primary culture in a chemically defined medium. This system may be useful for the study of mechanisms underlying the squamous differentiation of respiratory epithelial cells in the development of bronchogenic tumors.  相似文献   

20.
The cornified envelope is a layer of transglutaminase cross-linked protein that is deposited under the plasma membrane of keratinocytes in the outermost layers of the epidermis. We present the sequence of one of the cornified envelope precursors, a protein with an apparent molecular mass of 210 kD. The 210-kD protein is translated from a 6.5- kb mRNA that is transcribed from a single copy gene. The mRNA was upregulated during suspension-induced terminal differentiation of cultured human keratinocytes. Like other envelope precursors, the 210- kD protein became insoluble in SDS and beta-mercaptoethanol on activation of transglutaminases in cultured keratinocytes. The protein was expressed in keratinizing and nonkeratinizing stratified squamous epithelia, but not in simple epithelia or nonepithelial cells. Immunofluorescence staining showed that in epidermal keratinocytes, both in vivo and in culture, the protein was upregulated during terminal differentiation and partially colocalized with desmosomal proteins. Immunogold EM confirmed the colocalization of the 210-kD protein and desmoplakin at desmosomes and on keratin filaments throughout the differentiated layers of the epidermis. Sequence analysis showed that the 210-kD protein is homologous to the keratin- binding proteins desmoplakin, bullous pemphigoid antigen 1, and plectin. These data suggest that the 210-kD protein may link the cornified envelope to desmosomes and keratin filaments. We propose that the 210-kD protein be named "envoplakin."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号