首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The replicative mini-chromosome-maintenance 2–7 (MCM2-7) helicase is loaded in Saccharomyces cerevisiae and other eukaryotes as a head-to-head double-hexamer around origin DNA. At first, ORC/Cdc6 recruits with the help of Cdt1 a single MCM2-7 hexamer to form an ‘initial’ ORC/Cdc6/Cdt1/MCM2-7 complex. Then, on ATP hydrolysis and Cdt1 release, the ‘initial’ complex is transformed into an ORC/Cdc6/MCM2-7 (OCM) complex. However, it remains unclear how the OCM is subsequently converted into a MCM2-7 double-hexamer. Through analysis of MCM2-7 hexamer-interface mutants we discovered a complex competent for MCM2-7 dimerization. We demonstrate that these MCM2-7 mutants arrest during prereplicative complex (pre-RC) assembly after OCM formation, but before MCM2-7 double-hexamer assembly. Remarkably, only the OCM complex, but not the ‘initial’ ORC/Cdc6/Cdt1/MCM2-7 complex, is competent for MCM2-7 dimerization. The MCM2-7 dimer, in contrast to the MCM2-7 double-hexamer, interacts with ORC/Cdc6 and is salt-sensitive, classifying the arrested complex as a helicase-loading intermediate. Accordingly, we found that overexpression of the mutants cause cell-cycle arrest and dominant lethality. Our work identifies the OCM complex as competent for MCM2-7 dimerization, reveals MCM2-7 dimerization as a limiting step during pre-RC formation and defines critical mechanisms that explain how origins are licensed.  相似文献   

5.
6.
7.
8.
9.
10.
Interacting domains of E2F1, DP1, and the adenovirus E4 protein.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

11.
12.
The adenovirus type 5 (Ad5) early 1B (E1B) 55-kDa (E1B-55kDa)-E4orf6 protein complex has been implicated in the selective modulation of nucleocytoplasmic mRNA transport at late times after infection. Using a combined immunoprecipitation-immunoblotting assay, we mapped the domains in E1B-55kDa required for the interaction with the E4orf6 protein in lytically infected A549 cells. Several domains in the 496-residue 55-kDa polypeptide contributed to a stable association with the E4orf6 protein in E1B mutant virus-infected cells. Linker insertion mutations at amino acids 180 and 224 caused reduced binding of the E4orf6 protein, whereas linker insertion mutations at amino acid 143 and in the central domain of E1B-55kDa eliminated the binding of the E4orf6 protein. Earlier work showing that the central domain of E1B-55kDa is required for binding to p53 and the recent observation that the E4orf6 protein also interacts with the tumor suppressor protein led us to suspect that p53 might play a role in the E1B-E4 protein interaction. However, coimmunoprecipitation assays with extracts prepared from infected p53-negative H1299 cells established that p53 is not needed for the E1B-E4 protein interaction in adenovirus-infected cells. Using two different protein-protein interaction assays, we also mapped the region in the E4orf6 protein required for E1B-55kDa interaction to the amino-terminal 55 amino acid residues. Interestingly, both binding assays established that the same region in the E4orf6/7 protein can potentially interact with E1B-55kDa. Our results demonstrate that two distinct segments in the 55-kDa protein encoding the transformation and late lytic functions independently interact with p53 and the E4orf6 protein in vivo and provide further insight by which the multifunctional 55-kDa EIB protein can exert its multiple activities in lytically infected cells and in adenovirus transformation.  相似文献   

13.
14.
15.
16.
The adenovirus (Ad) E1b55K and E4orf6 gene products assemble an E3 ubiquitin ligase complex that promotes degradation of cellular proteins. Among the known substrates are p53 and the Mre11-Rad50-Nbs1 (MRN) complex. Since members of the RecQ helicase family function together with MRN in genome maintenance, we investigated whether adenovirus affects RecQ proteins. We show that Bloom helicase (BLM) is degraded during adenovirus type 5 (Ad5) infection. BLM degradation is mediated by E1b55K/E4orf6 but is independent of MRN. We detected BLM localized at discrete foci around viral replication centers. These studies identify BLM as a new substrate for degradation by the adenovirus E1b55K/E4orf6 complex.  相似文献   

17.
过表达E2F6基因抑制BRD7基因启动子活性   总被引:1,自引:0,他引:1  
BRD7基因是采用cDNA代表性差异分析法克隆的一个新Bromodomain基因(GenBank 登录号AF152604)。它在鼻咽癌细胞和组织中表达明显下调,过表达BRD7基因可抑制鼻咽癌细胞的生长和细胞周期的进程。前期工作已克隆了BRD7基因启动子区,并将其启动子定位于450bp(-404→+46bp)的区域。为了进一步揭示BRD7基因在鼻咽癌细胞和组织中表达下调的分子机制,生物信息学分析表明BRD7启动子区有E2F6转录因子结合位点,电泳迁移率实验结果表明转录因子E2F6特异性地结合于BRD7启动子区。荧光素酶检测和绿色荧光蛋白表达检测都证实过表达E2F6基因能抑制BRD7基因启动子活性  相似文献   

18.
The expression of the human cholecystokinin-2/gastrin receptor (CCK-2R) has been widely reported in human colorectal cancers. Recently, a splice variant of the CCK-2R retaining intron 4 (CCK-2i4svR) has been cloned from human colorectal cancers and postulated to exhibit constitutive activity. But its role in mediating carcinogenic effects of mature-amidated gastrin in colorectal cancers has not been fully explored. The purpose of the present study was to determine whether the activation of CCK-2i4svR by gastrin transactivates the COX-2 promoter in human colon cancer cells and in COS-7 cells. In this study, Colo320 cells and COS-7 cells were transfected with the human CCK-2R wild type (CCK-2wtR) (COS-7WT, Colo320WT) and the human CCK-2i4svR (COS-7SV, Colo320SV) cDNA. After stimulation with gastrin-17 (G-17), transactivation of the COX-2 promoter was determined by luciferase reporter gene assay. 5'deletions of the COX-2 promoter were transfected into Colo320 cells to narrow down the minimally required regulatory element. Induction of COX-2 expression was further explored at the mRNA level using real time RT-PCR. The effects of CCK-2i4svR activation on phosphorylation of ERK1/2, p38(MAPK) and JNK were examined by using immunoblotting. Prostaglandin E(2) (PGE(2)) secretion was measured by ELISA. Our results showed that gastrin transactivates the COX-2 promoter in both Colo320 cells and COS-7 cells expressing the CCK-2i4svR cDNA. Inhibition of p38(MAPK) pathway using specific inhibitor significantly blocked the gastrin-induced COX-2 transactivation. Gastrin time-dependently increased COX-2 mRNA expression, the peak mRNA levels appeared at 10 h after stimulation. PGE(2) secretion from gastrin-treated cells increased significantly 8 h after stimulation. Treatment with gastrin also stimulated PGE(2) secretion in the Colo320 cells expressing CCK-2i4svR. In conclusion, the CCK-2i4svR mediates transactivation of the COX-2 promoter and MAPK pathway is involved in this process.  相似文献   

19.
Induction of apoptosis by adenovirus E4orf4 protein   总被引:2,自引:0,他引:2  
Adenovirus E4orf4 protein is a multifunctional viral regulator that induces p53-independent apoptosis in transformed cells, but not in normal cells. E4orf4-induced apoptosis can occur without activation of known caspases, although E4orf4 induces caspase activity in some cell lines. The interaction of E4orf4 with a specific subpopulation of protein phosphatase 2A (PP2A) molecules that contain B subunits, but not with those that contain B subunits, is required for induction of apoptosis. This review suggests the potential use of E4orf4 in cancer therapy, and discusses whether E4orf4-induced apoptosis plays a role in the viral life cycle. Future research directions are also highlighted.  相似文献   

20.
We have previously demonstrated that the Adenovirus 2 (Ad2) E4 promoter is activated by an E1A gene product through an inducible enhancer. We now show that several DNA-protein complexes can be identified by gel-shift assay; the formation of one of these complexes involves the two core sequences previously found critical to the promoter activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号