首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
DNA synthesis in cells deprived of arginine was examined. Three lines of evidence indicated that tritiated thymidine ([3H]TdR) incorporation in arginine-starved cells was due to replicative rather than repair DNA synthesis. (a) When made in the presence of bromodeoxyuridine, the [3H]TdR-labeled DNA sedimented at hybrid density in isopycnic gradients. (b) As determined by the diphenylamine reaction, there was a 15% increase in the chemical amount of DNA per culture 30 h after arginine deprivation. (c) [3H]TdR incorporation was hydroxyurea- sensitive. Alkaline velocity sedimentation of the total DNA made during starvation revealed the existence of two distinct size classes: most of the DNA sedimented at a position analogous to that of control DNA, but 40% migrated one-third the distance of the bulk. After arginine restoration, these shorter pieces appeared to be chased into DNA of normal length; thus, one lesion in deprived cultures may cause an arrest in completion of DNA stretches to mature size. These findings, together with results of morphological studies of starved cells, suggest that changes induced by arginine deficiency effect the organization of nucleoproteins. These changes are reversible upon arginine restoration.  相似文献   

2.
When exponentially growing CHO cells were deprived of arginine (Arg), cell multiplication ceased after 12 h, but initiation of DNA synthesis continued: after 48 h of starvation with continuous [3H]thymidine exposure, 85% of the population had incorporated label, as detected autoradiographically. Consideration of the distribution of exponential cells in the various cell cycle phases leads to a calculation that most cells in G1 at the time that Arg was removed, as well as those in S, engaged in some DNA synthesis during starvation. In contrast, isoleucine (Ile)-starved cells did not initiate DNA synthesis, as has been reported by others. Experiments with cells synchronized by mitotic selection confirmed this difference in Arg- and Ile- deprived behavior, but also showed that cells which underwent the mitosis leads to G1 transition during Arg starvation remained arrested in G1 (G0?). The results suggest that Arg-deprived cells continue to maintain some proliferative function(s) while Ile-deprived cells do not.  相似文献   

3.
Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([3H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([3H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9–12 h after addition of isoleucine and virtually all [3H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G1 because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.  相似文献   

4.
Parameters are described for reproducible S phase synchrony of Chinese hamster ovary cells growing in monolayer, adapting a method described by Tobey & Crissman [1] for CHO cells growing in suspension culture. Cells are collected at the G1/S boundary in hydroxyurea after reversal of an early G1 block induced by isoleucine deprivation. The entire population enters the S period within 60 min after removal of hydroxyurea and proceeds through the S period with minimal decay of synchrony, as evidenced by autoradiographic and rate studies on [3H]TdR uptake. In addition, a method is described for obtaining cells synchronized during two successive S periods. The presence of hydroxyurea during G1 does not measurably affect the rate of uptake of [3H]uridine or [3H]leucine into TCA-insoluble material; however, cultures released from the hydroxyurea block at 10 h incorporate slightly more [3H]uridine (but not [3H]leucine) in the next 6 h than cultures maintained in hydroxyurea over this interval. Delaying entry into S with hydroxyurea for as long as 15 h does not significantly change the initial rate or duration of DNA synthesis upon removal of hydroxyurea, arguing against the build-up of substances responsible for initiation of replicons. Furthermore, if DNA synthesis is delayed with hydroxyurea in one cell cycle, a constant minimal interval of 15 h elapses before the population enters into the next S phase, suggesting that the timing of the S period is coupled to the timing of the previous S.  相似文献   

5.
Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine [( 3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12-48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections. A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h. These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44-48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

6.
Cell suspensions were prepared from normal and regenerating liver of adult rats by perfusion with a calcium-chelating agent (EGTA), collagenase and hyaluronidase, and the cells were incubated in culture medium. In cultures prepared from regenerating liver at 20 h after partial hepatectomy, 23 ± 4% of parenchymal cells initially incorporated [3H]TdR. This incorporation was shown to reflect semiconservative DNA replication. At least some parenchymal cells were able to complete their DNA synthesis and to progress through G2 and mitosis. Numbers of hepatocytes in mitosis increased up to 12 h of culture. On the other hand, no entry of hepatocytes into the S period was detectable in cultures prepared from normal or regenerating liver.  相似文献   

7.
Feulgen cytophotometry and autoradiography were used to study DNA content and DNA synthesis in starved and starved-refed Tetrahymena pyriformis GL-C. It was found that (1) the cell population shows a limited increase in cell number during starvation and this increase is restricted to the first 7 h of starvation; (2) at the end of starvation, there is a portion of the cell population whose DNA content is similar to that for standard G2 cells; (3) a significant portion of the dividing cells at the first division following refeeding in the presence of [3H]TdR are unlabeled; (4) these unlabeled cells are among the first to divide and, upon division, generally enter into a cell cycle either lacking a G1 phase or with a shortened G1 phase.  相似文献   

8.
The effect of exposure to extremely low-frequency pulsed electromagnetic fields (EMFs) on DNA repair capability and on cell survival in human lymphocytes damaged in vitro with gamma rays was studied by two different micromethods. In the first assay, which measures DNA repair synthesis (unscheduled DNA synthesis, UDS), lymphocyte cultures were stimulated with phytohemagglutinin (PHA) for 66 h and then treated with hydroxyurea (which blocks DNA replication), irradiated with 100 Gy of 60Co, pulsed with [3H]thymidine ([3H]TdR), and then exposed to pulsed EMFs for 6 h (the period in which cells repaired DNA damage). In the second assay, which measures cell survival after radiation or chemical damage, lymphocytes were first irradiated with graded doses of gamma rays or treated with diverse antiproliferative agents, and then stimulated with PHA, cultured for 72 h, and pulsed with [3H]TdR for the last 6 h of culture. In this case, immediately after the damage induced by either the radiation or chemicals, cultures were exposed to pulsed EMFs for 72 h, during which cell proliferation took place. Exposure to pulsed EMFs did not affect either UDS or cell survival, suggesting that this type of nonionizing radiation--to which humans may be exposed in the environment, and which is used for both diagnostic and therapeutic purposes--does not affect DNA repair mechanisms.  相似文献   

9.
Mouse mammary epithelial cells were plated onto 24-well culture plates (50,000 per well), allowed to attach and serum starved for 24 h. Following serum starvation, DNA synthesis was induced by the addition of 10% fetal calf serum and determined by a 1-h pulse with [3H]thymidine from 17 to 18 h after serum addition. Addition of oligonucleotides antisense to the translation start region of cyclic AMP-dependent protein kinase (kinase A) mRNA inhibited thymidine incorporation into DNA (total or percentage of cells incorporating thymidine, as measured by autoradiography). This inhibition was apparent whether compared to controls with no oligonucleotide addition, sense oligonucleotides, or mismatch oligonucleotides. Enzymatic assays indicated that the antisense oligonucleotides lowered kinase A activity in cells. Time course studies indicated that the inhibition in DNA synthesis was not an artifact of the time at which DNA synthesis was estimated. Long-term (4 day) cultures indicated that effects on induction of DNA synthesis were reflected in long-term cell proliferation.  相似文献   

10.
The rates of deoxyribonucleic acid (DNA) synthesis during the division cycles of the Escherichia coli strains B/r, K-12 3000, 15T(-), and 15 have been measured in synchronous cultures, under several conditions of slow growth. These synchronous cultures were obtained by sucrose gradient centrifugation of exponentially growing cultures, after which the smallest cells were removed from the gradient and allowed to grow. Sucrose gradient centrifugation did not adversely affect the cell cycle, since an experiment in which an exponentially growing culture was pulsed with [(3)H]thymidine prior to the periodic separation and assay of the smallest cells resulted in the same conclusions, as given below. In the strains of E. coli that were studied, a decreased rate of [(3)H]thymidine incorporation was seen late in the cell cycle, prior to cell division. No decrease in the rate of [(3)H]thymidine incorporation was seen at or near the beginning of the cell cycle. Thus, all these strains appear to regulate DNA synthesis in a similar fashion during slow growth. In addition, a correlation between the appearance of cells with visible cross-walls and the start of a new round of DNA synthesis was seen, indicating that these two events might be related.  相似文献   

11.
Tritiated thymidine incorporation (TTI) into DNA was used to examine bacterial production in two soil types from the Robertskollen group of nunataks in northwestern Dronning Maud Land, providing the first estimates of bacterial production in soil habitats on the Antarctic continent. Although estimates of bacterial productivity in soils near to bird nests (344 (plusmn) 422 ng of C g [dry weight](sup-1) h(sup-1)) were higher than those for soils from beneath mosses (175 (plusmn) 90 ng of C g [dry weight](sup-1) h(sup-1); measured by TTI at 10(deg)C), these differences were not significant because of patchiness of bacterial activity (P > 0.05). TTI- and [(sup14)C]leucine ([(sup14)C]Leu)-derived estimates of bacterial production were similar when incubations of 3 h were used, although incubations as short as 1 h were sufficient for measurable uptake of radiolabel. Dual-label incorporation of [(sup3)H]thymidine ([(sup3)H]TdR) into DNA and [(sup14)C]Leu into protein indicated that TTI did not reflect bacterial production of in situ assemblages when incubations were longer than 3 h. Isotope dilution analysis indicated that dilution of the specific activity of exogenously supplied [(sup3)H]TdR by de novo synthesis of TdR precursor could be limited by additions of [(sup3)H]TdR at a concentration of 1 nmol per ca. 115 mg of soil. TTI exhibited a psychrotrophic response to variation in temperature, with a temperature optimum of ca. 15(deg)C and a Q(inf10) value for 0 to 10(deg)C of 2.41.  相似文献   

12.
Continuous exposure of chicken embryo limb bud mesenchyme cells undergoing chondrogenesis in vitro to [3H] thymidine thymidine [(3H]TdR) revealed that more than 90% of the cells synthesized DNA at least once during 120 h of culture. When cells were exposed to [3H]TdR for 24 h beginning at various times throughout the culture period, the percentage of cells which incorporated [3H]TdR during each period was approximately 92%. However, when the period for incorporation of radioisotope was limited to two hours, the number of cells which incorporated [3H]TdR was found to decline during chondrogenesis in vitro. This decline was coincident with the appearance of extracellular matrix material and occurred in those cells which had, and had not, expressed the cartilage phenotype. We conclude from these studies that (1) practically all of the cells continue to proliferate while chondrogenesis is occurring in vitro, (2) there is an increase in the length of the cell cycle during chondrogenesis in vitro, and (3) withdrawal from the cell cycle is not required for differentiation of mesenchyme into cartilage.  相似文献   

13.
Cellular uptake of [3H]thymidine [( 3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 X 10(-18) mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10% X min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

14.
The influence of aminopterin (AP), tritiated thymidine ([3H] TdR) and "cold" thymidine (TdR) on production of chromosomal aberrations in meristematic cells of Crepis capillaris irradiated in different stages of the mitotic cycle with 300 rad of 63Co gamma-rays was studied. All the chemical treatments increased most of all the frequency of aberrations induced during two "critical periods" localized before the stage of DNA synthesis (fixation 9 h after irradiation) and before that of mitosis (4 h). Treatments with TdR and [3H]TdR increased most of all the frequency of chromatid aberrations when irradiation was performed in G1, and the frequency of gaps when irradiated in G2. Treatment with AP increased the yield of different types of aberration more uniformly. The modifying effect of the chemicals tested appeared to be independent of replicative synthesis. The "critical periods" are suggested to be the stages when regular "proof reading" and correction of spontaneous errors takes place [9,13]. In addition to this regular mechanism, radiation induces an "emergency" mechanism of repair. AP inhibits the mechanism of regular repair; in addition TdR and [3H] TdR suppress the lateral spread of primary injuries across the chromosome.  相似文献   

15.
3T3 cells were cultured in media with different phosphate concentrations and the effects on DNA synthesis were examined. Even a modest phosphate depletion markedly inhibited DNA synthesis and cell multiplication in proliferating cultures. Furthermore, the decrease in the proportion of DNA-synthesizing cells observed after phosphate starvation followed the same time-course as the decrease seen after serum starvation. Cells starved to quiescence in a medium with a 100-fold decrease in phosphate concentration remained viable but non-proliferating for up to 3 weeks, i.e. they had entered a state of quiescence comparable with that seen after serum starvation. Addition of phosphate to phosphate-depleted cultures restored DNA synthesis within 24h. Furthermore, the kinetics of [3H]thymidine labelling after phosphate addition were nearly identical with the labelling kinetics following addition of serum to serum-depleted cultures. In contrast, phosphate deprivation had no inhibitory effects on DNA synthesis in simian-virus-40-transformed 3T3 cells. Furthermore, the inhibitory effects on DNA synthesis in such cells caused by a complete removal of serum could not be further enhanced by decreasing the phosphate concentration in the culture medium.  相似文献   

16.
Density-dependent inhibition of growth of cultured human fibroblasts was associated with a 3- to 4-fold rise in the intracellular concentration of cyclic AMP (cAMP). Serum lowered cAMP levels in 2–5 min, with the low levels persisting for several hours. When quiescent fibroblast cultures were treated with 10% serum, the incorporation of [3H]TdR into DNA increased after a 10–16 h lag, reaching a peak by 20–24 h. Dibutyryl cyclic AMP (db-cAMP), when present throughout serum treatment, produced a dose-dependent inhibition of [3H]TdR incorporation. Half-maximal inhibition was seen with 0.1 mM db-cAMP. When db-cAMP or another cyclic nucleotide phosphodiesterase inhibitor, l-methyl-3-isobutylxanthine (SC-2964), was added together with serum to maintain elevated cAMP levels and after 4 h was replaced with fresh serum-containing medium, the wave of DNA synthesis induced by serum was not delayed. This implied that stimulation by serum could occur without an initial decrease in cAMP concentration. In contrast, db-cAMP added 8 h later than serum and not removed, inhibited [3H]TdR incorporation at the peak to the same extent as db-cAMP added together with serum. The inhibition decreased progressively when db-cAMP was added more than 8 h after serum. These results suggested that a cAMP-sensitive step occurred approx. 8 h after the addition of serum in mid-G1 of the cell cycle. Results obtained using fibroblasts synchronized at the G1/S boundary with hydroxyurea or exposed to db-cAMP for 24 h suggested that db-cAMP also inhibited TdR incorporation at the G1/S interphase or during S phase. Thus, whereas reduced cAMP concentrations did not appear to serve as an initial trigger for serum-stimulated DNA synthesis in human fibroblasts, db-cAMP and SC-2964, presumably by elevating cAMP levels, appeared to act in mid-G1 and possibly at the G1/S boundary or within S phase to inhibit thymidine incorporation.  相似文献   

17.
When Chinese hamster (CHO-K1) cells are grown as monolayer cultures, they eventually reach a population-density plateau after which no net increase in cell numbers occurs. The kinetics of aged cells in nutritionally deprived (starved) or density-inhibited (fed) late plateau-phase cultures were studied by four methods: (i) Reproductive integrity and cell viability were monitored daily by clonogenic-cell assay and erythrosin-b dye-exclusion techniques. (ii) Mitotic frequencies of cells from 18 day old cultures were determined during regrowth by analysing time-lapse video microscope records of dividing cells. (iii) Tritiated-thymidine ([3H]TdR) autoradiography was used to determine the fractions of DNA-synthesizing cells in cultures entering plateau phase and during regrowth after harvest. (iv) The rate of labelled nucleoside uptake and incorporation into DNA was measured using liquid scintillation or sodium iodide crystal counters after labelling with [3H]TdR or [125I]UdR. Non-cycling cells in starved cultures accumulate primarily as G1 phase cells. Most cells not in G1 phase had stopped in G2 phase. Very few cells (less than 2%) were found in S phase. In contrast, about half of the cells in periodically fed cultures were found to be in DNA-synthetic phase, and the percentage of these S phase cells fluctuated in a manner reflecting the frequency of medium replacement. Populations of both types of plateau-phase cultures demonstrate extremely coherent cyclic patterns of DNA synthesis upon harvest and reculturing. They retain this high degree of synchrony for more than three generations after the resumption of growth. From these data it is concluded that nutritionally deprived (starved) late plateau-phase cells generally stop in either G1 or G2 phase, whereas periodically fed late plateau-phase cultures contain a very large fraction of cycling cells. Populations of cells from these two types of non-expanding cultures are kinetically dissimilar, and should not be expected to respond to extracellular stimuli in the same manner.  相似文献   

18.
Populations of G1 phase 3T3 and SV40 3T3 mouse fibroblasts have been isolated from exponentially growing cultures by the technique of centrifugal elutriation. Return of the G1 phase cells to growth conditions results in their synchronous passage through the cell cycle, as determined from monitoring of cell number, [3H]thymidine ([3H]TdR) incorporation and fraction of [3H]TdR labeled nuclei. The durations of G1, S and G2 phases are consistent with values obtained by previous investigators using conventional induction techniques for synchronization. The method for isolation of the G1 phase cells is rapid, the yield is high and the process does not appear to alter the temporal aspects of the cell cycle in either cell type.  相似文献   

19.
Flow cytometry of cellular DNA content provides rapid estimates of DNA distributions, i.e. the proportions of cells in the different phases of the cell cycle. Measurements of DNA alone, however, yield no kinetic information and can make it difficult to resolve the cell cycle distributions of normal and transformed cells present in tumour biopsy specimens. The use of absorption cytophotometry of the Feulgen DNA content and [3H]TdR labelling of the same nuclei provides objective criteria to distinguish the ranges of DNA content for G0/G1, S, and G2/M cells. We now report on a study in which we combined flow and absorption cytometry to resolve the cell cycle distributions of host and tumour cells present in biopsy specimens of MCa-11 mouse mammary tumours labelled in vivo for 0.5 hr with [3H]TdR. A similar analysis of exponential monolayer cultures, labelled for 5 min with [3H]TdR under pulse-chase conditions, revealed a highly synchronous traversal of almost all cells through the different phases of the cell cycle. Combination of the flow and absorption methods also allowed us to detect G2 tumour cells in vivo and a minor tumour stem-line in vitro, to show that these two techniques are complementary and yield new information when they are combined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号