首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of a self-complementary octanucleotide, d(G-G-T-T-A-A-C-C-), using a modified triester approach is described. The protected dinucleotides, d(Me2O)TribG(C1C6H4) ibG, d(Me2O)TrT(ClC6H4)T, d(Me2O)TrbzA(ClC6H4)bzA, and d(Me2O)TranC(ClC6H4)anC were synthesized by a one step triester procedure. After removal of the trityl group, the dinucleotides, dT(ClC6H4)T and danC (ClC6H4)anC were coupled to d(Me2O)TribG(ClC6H4)ibG and d(Me2O)TrbzA(ClC6H4)bzA, respectively to yield the respective tetranucleotides. The tetranucleotide, d(Me2O)TrbzA(ClC6H4)bzA(ClC6H4) and (ClC6H4)anC was detritylated and then coupled with d(Me2O)TribG(ClC6H4)ibG(ClC6H4)T(Cl6H4)T to give octanucleotide. The fully protected octanucleotide was deblocked by treatment with aqueous NH3 followed by acid and was characterized by nucleotide sequence analysis.  相似文献   

2.
Antifungal activity of organobismuth(III) and (V) compounds 1-9 was examined against the yeast, Saccharomyces cerevisiae. A clear structure-activity relationship was observed in these compounds. Thus, triarylbismuth dichlorides 2 [(4-YC6H4)3BiCl2: Y=MeO, F, Cl, CF3, CN, NO2] and halobismuthanes 6 [2-(t)BuSO2C6H4(4-YC6H4)BiX: Y=MeO, Me, H, Cl; X=Cl, Br, I], 7 [Bi(X)(C6H4-2-SO2C6H4-1'-): X=Cl, Br, I], 8 [2-Me2NCH2C6H4(Ph)BiX: X=Cl, Br] and 9 [4-MeC6H4(8-Me2NC10H6-1-)BiCl] showed the growth inhibition effect, while triarylbismuth difluorides 3 [(4-YC6H4)3BiF2] and triarylbismuthanes 1 [(4-YC6H4)3Bi], 4 [2-(t)BuSO2C6H4(4-YC6H4)2Bi] and 5 [4-YC6H4Bi(C6H4-2-SO2C6H4-1'-)] were not active at all irrespective of the nature of the substituents. Generation of the inhibition effect is governed by the facility of nucleophilic reaction at the bismuth center and the Lewis acidic bismuth center is an active site. Of all the bismuth compounds attempted, halobismuthanes 7 derived from diphenyl sulfone exhibited the highest activities. An X-ray crystallographic study of 7a [Bi(Cl)(C6H4-2-SO2C6H4-1'-)] revealed that the bismuth center adopts a seven-coordinated geometry, which is unusual in organobismuth(III) compounds, through the intramolecular and intermolecular coordination between the bismuth and oxygen atoms. The marked inhibition effect of 7 may be attributed to such a highly coordinated geometry, which allows the bismuth center to bind tightly with some biomolecules playing important roles in the growth of S. cerevisiae.  相似文献   

3.
We have cloned a transporter protein from rabbit small intestine, which, when coexpressed with the 4F2 heavy chain (4F2hc) in mammalian cells, induces a b(0,+)-like amino acid transport activity. This protein (4F2-lc6 for the sixth member of the 4F2 light chain family) consists of 487 amino acids and has 12 putative transmembrane domains. At the level of amino acid sequence, 4F2-lc6 shows significant homology (44% identity) to the other five known members of the 4F2 light chain family, namely LAT1 (4F2-lc1), y(+)LAT1 (4F2-lc2), y(+)LAT2 (4F2-lc3), xCT (4F2-lc4), and LAT2 (4F2-lc5). The 4F2hc/4F2-lc6 complex-mediated transport process is Na(+)-independent and exhibits high affinity for neutral and cationic amino acids and cystine. These characteristics are similar to those of the b(0,+)-like amino acid transport activity previously shown to be associated with rBAT (protein related to b(0,+) amino acid transport system). However, the newly cloned 4F2-lc6 does not interact with rBAT. This is the first report of the existence of a b(0,+)-like amino acid transport process that is independent of rBAT. 4F2-lc6 is expressed predominantly in the small intestine and kidney. Based on the characteristics of the transport process mediated by the 4F2hc/4F2-lc6 complex and the expression pattern of 4F2-lc6 in mammalian tissues, we suggest that 4F2-lc6 is a new candidate gene for cystinuria.  相似文献   

4.
Eight newly synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2 with R = pCl-C6H4 1a, pBr-C6H4 2a, C6H5 3a, and pMe-C6H4 4a and RC(O)NHP(O)(NC4H8O)2 R = pCl-C6H4 1b, pBr-C6H4 2b, C6H5 3b, pMe-C6H4 4b, were selected to compare the inhibition kinetic parameters, IC50, Ki, kp and KD, on human erythrocyte acetylcholinesterase (hAChE) and bovine serum butyrylcholinesterase (BuChE), Also, the in vivo inhibition potency of compound 2a, 2b and 3a, were studied. The data demonstrates that compound 2a and compound 2b are the potent sensitive as AChE and BuChE inhibitors respectively, and the inhibition of hAChE is about 10-fold greater than that of BuChE.  相似文献   

5.
beta-Thujaplicin (hinokitiol) is a tropolone derivative present in the heartwood of cupressaceous plants and is used as a medicine, a food additive, and a preservative, and in cosmetics as hair tonic. The cultured plant cells of Nicotiana tabacum glycosylated beta-thujaplicin to two glucosides, 4-isopropyltropolone 2-O-beta-D-glucoside (6%) and 6-isopropyltropolone 2-O-beta-D-glucoside (12%), and two gentiobiosides, 4-isopropyltropolone 2-O-beta-D-gentiobioside (2%) and 6-isopropyltropolone 2-O-beta-D-gentiobioside (5%) after 48 h incubation. The use of immobilized cells of N. tabacum in sodium alginate gel much improved the yield of the products; the glycosylation of beta-thujaplicin with immobilized N. tabacum gave the glycoside products, 4-isopropyltropolone 2-O-beta-D-glucoside (11%), 4-isopropyltropolone 2-O-beta-D-gentiobioside (6%), 6-isopropyltropolone 2-O-beta-D-glucoside (20%), and 6-isopropyltropolone 2-O-beta-D-gentiobioside (10%). On the other hand, 4-isopropyltropolone 2-O-beta-D-glucoside (14%), 4-isopropyltropolone 2-O-beta-D-gentiobioside (7%), 6-isopropyltropolone 2-O-beta-D-glucoside (33%), and 6-isopropyltropolone 2-O-beta-D-gentiobioside (13%) were obtained through the biotransformation with immobilized cells in the medium without iron ions. In comparison with the case of bioconversion in the normal medium containing iron ions, removal of iron ions improved the yields of products.  相似文献   

6.
The conformational analysis of the recently synthesized tetrasaccharides alpha-D-Manp (1----3)-[alpha-D-Manp-(1----6)]-4-deoxy-beta-D-lyx-hexp+ ++-(1----4)-D-GlcNAc (2) and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Talp -(1----4)-D-GlcNAc (3) will be described. The preferred solution conformation of 2 and 3 is a gt-conformation, which is nearly identical with the preferred conformation of the naturally occurring tetrasaccharide alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-D-GlcNAc (1). The main structural feature is the backfolding of the alpha-(1----6)-linked D-Man to the reducing D-GlcNAc unit. Conformational analysis of the tetrasaccharides alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-1,6- anhydro-beta-D-GlcNAc (4), alpha-D-Manp-(1----3)-alpha-D-Manp-(1----6)]-4-deoxy-beta-D- lyx-hexp-(1----4)- 1,6-anhydro-beta-D-GlcNAc (5), and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Talp -(1----4)- 1,6-anhydro-beta-D-GlcNAc (6) gave additional proof for this backfolding. The substitution of the reducing unit leads to a smaller amount of gt- and a greater amount of gg-conformers. The method used for conformational analysis of 2-6 is a combination of n.m.r.-experiments and HSEA-calculations with the program GESA. Concerning the application of new 2D-techniques, the COLOC-experiment turned out to be extremely useful in sequencing oligosaccharides.  相似文献   

7.
Ly-6 proteins appear to serve cell adhesion and cell signaling function, but the precise role of Ly-6A.2 in CD4+ T lymphocytes is still unclear. Overexpression of Ly-6A.2 in T lymphocytes has allowed us to analyze the influence of elevated Ly-6A.2 expression on T cell function. In this study we report reduced proliferation of CD4+ T cells overexpressing Ly-6A.2 in response to a peptide Ag. Moreover, the Ly-6A.2-overexpressing CD4+ cells generated elevated levels of IL-4, a key factor that propels the differentiation of naive CD4+ T cells into Th2 subset. The hyporesponsiveness of Ly-6A.2 transgenic CD4+ T cells is dependent on the interaction of Ly-6A.2 T cells with the APCs and can be reversed by blocking the interaction between Ly-6A.2 and a recently reported candidate ligand. Overexpression of Ly-6A.2 in CD4+ T cells reduced their Ca(2+) responses to TCR stimulation, therefore suggesting effects of Ly-6A.2 signaling on membrane proximal activation events. In contrast to the observed Ag-specific hyporesponsiveness, the Ly-6A.2 transgenic CD4+ T cells produced IL-4 independent of the interactions between Ly-6A.2 and the candidate Ly-6A.2 ligand. Our results suggest that 1) interaction of Ly-6A.2 with a candidate ligand regulates clonal expansion of CD4+ Th cells in response to an Ag (these results also provide further functional evidence for presence of Ly-6A.2 ligand on APC); and 2) Ly-6A.2 expression on CD4+ T cells promotes production of IL-4, a Th2 differentiation factor.  相似文献   

8.
(+)-18-crown-6 tetracarboxylic acid (18C6H(4)) has been used as a chiral selector for various amines and amino acids. To further clarify the structural scaffold of 18C6H(4) for chiral separation, single crystal X-ray analysis of its glycine(+) (1), H3O+ (2), H5O2+ (3), NH4+ (4), and 2CH3NH3+ (5) complexes was performed and the guest-dependent conformation of 18C6H(4) was investigated. The crown ether ring of 18C6H4 in 3, 4, and 5 took a symmetrical C2 or C2-like conformation, whereas that in 1 and 2 took an asymmetric C1 conformation, which is commonly observed in complexes with various optically active amino acids. The overall survey of the present and related complexes suggests that the molecular conformation of 18C6H4 is freely changeable within an allowable range, depending on the molecular shape and interaction mode with the cationic guest. On the basis of the present results, we propose the allowable conformational variation of 18C6H4 and a possible transition pathway from its primary conformation to the conformation suitable for chiral separation of racemic amines and amino acids.  相似文献   

9.
10.
1. The vanadium (V-) nitrogenase of Azobacter chroococcum transfers up to 7.4% of the electrons used in acetylene (C2H2) reduction for the formation of ethane (C2H6). The apparent Km for C2H2 (6 kPa) is the same for either ethylene (C2H4) or ethane (C2H6) formation and much higher than the reported Km values for C2H2 reduction to C2H4 by molybdenum (Mo-) nitrogenases. Reduction of C2H2 in 2H2O yields predominantly [cis-2H2]ethylene. 2. The ratio of electron flux yielding C2H6 to that yielding C2H4 (the C2H6/C2H4 ratio) is increased by raising the ratio of Fe protein to VFe protein and by increasing the assay temperature up to at least 40 degrees C. pH values above 7.5 decrease the C2H6/C2H4 ratio. 3. C2H4 and C2H6 formation from C2H2 by V-nitrogenase are not inhibited by H2. CO inhibits both processes much less strongly than it inhibits C2H4 formation from C2H2 with Mo-nitrogenase. 4. Although V-nitrogenase also catalyses the slow CO-sensitive reduction of C2H4 to C2H6, free C2H4 is not an intermediate in C2H6 formation from C2H2. 5. Propyne (CH3C identical to CH) is not reduced by the V-nitrogenase. 6. Some implications of these results for the mechanism of C2H6 formation by the V-nitrogenase are discussed.  相似文献   

11.
We have shown previously that a highly sulfated sequence, GalNAc(4,6-SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), is present at the nonreducing terminal of chondroitin sulfate (CS), and this structure was synthesized from a unique sequence, GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), by sulfation with N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase. Uronosyl 2-O-sulfotrasferase (2OST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 2 of the GlcA residue of CS, is expected to be involved in synthesis of these structures; however, the specificity of 2OST concerning recognition of the sulfation pattern of the acceptor has largely remained unclear. In the present study, we examined the specificity of 2OST in terms of recognition of the sulfation pattern around the targeting GlcA residue. The recombinant 2OST could sulfate CS-A, CS-C, and desulfated dermatan sulfate. When [(35)S]glycosaminoglycans formed from CS-A after the reaction with the recombinant 2OST and [(35)S]PAPS were subjected to limited digestion with chondroitinase ACII, a radioactive tetrasaccharide (Tetra A) was obtained as a sole intermediate product. The sequence of Tetra A was found to be DeltaHexA-GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)) by enzymatic and chemical reactions. These observations indicate that 2OST transfers sulfate preferentially to the GlcA residue located in a unique sequence, -GalNAc(4SO(4))-GlcA-GalNAc(6SO(4))-. When oligosaccharides with different sulfation patterns were used as the acceptor, GalNAc(4SO(4))-GlcA-GalNAc(6SO(4)) and GlcA-GalNAc(4SO(4))-GlcA-GalNAc(6SO(4)) were the best acceptors for 2OST among trisaccharides and tetrasaccharides, respectively. These results suggest that 2OST may be involved in the synthesis of the highly sulfated structure found in CS-A.  相似文献   

12.
M Numazawa  Y Osawa 《Steroids》1979,34(3):347-360
The synthesis of epimeric 6-bromo-4-androstene-3,17-dione (1a and 1b), 6-bromotestosterone (2a and 2b) and its acetate (3a and 3b), and 6-bromo-16 alpha-acetoxy-4-androstene-3,17-dione (5a and 5b), and 6 beta-bromo-16 alpha-hydroxy-4-androstene-3,17-dione (4) is described. The interconversions among compounds 1, 2, and 3 are also studied. The 6 beta-isomer (1b, 2b, and 3b) was epimerized to the 6 alpha-isomer (1a, 2a and 3a) in carbon tetrachloride or chloroform-methanol (9:1) and the 6 alpha-isomer was isolated by fractional crystallization from the epimeric mixture. 6 alpha-Bromo isomer 1a was also epimerized back to 6 beta-bromo isomer 1b in chloroform-methanol (9:1). Two polymorphic forms of 6 beta-bromotestosterone acetate (3b) were isolated (mp. 114--117 degrees and 138--141 degrees). The 6 beta-bromo isomers were found to be unstable in methanol and decomposed to give 5 alpha-androstane-3,6-dione derivative (6). The results of irreversible inactivation of human placental androgen aromatase with some of these 6-bromoandrogens are discussed.  相似文献   

13.
Plant copper/topaquinone-containing amine oxidases (CAOs, EC 1.4.3.6) are enzymes oxidising various amines. Here we report a study on the reactions of CAOs from grass pea (Lathyrus sativus), lentil (Lens esculenta) and Euphorbia characias, a Mediterranean shrub, with N6-aminoalkyl adenines representing combined analogues of cytokinins and polyamines. The following compounds were synthesised: N6-(3-aminopropyl)adenine, N6-(4-aminobutyl)adenine, N6-(4-amino-trans-but-2-enyl) adenine, N6-(4-amino-cis-but-2-enyl) adenine and N6-(4-aminobut-2-ynyl) adenine. From these, N6-(4-aminobutyl) adenine and N6-(4-amino-trans-but-2-enyl)adenine were found to be substrates for all three enzymes (Km approximately 10(-4)M). Absorption spectroscopy demonstrated such an interaction with the cofactor topaquinone, which is typical for common diamine substrates. However, only the former compound provided a regular reaction stoichiometry. Anaerobic absorption spectra of N6-(3-aminopropyl)adenine, N6-(4-amino-cis-but-2-enyl)adenine and N6-(4-aminobut-2-ynyl)adenine reactions revealed a similar kind of initial interaction, although the compounds finally inhibited the enzymes. Kinetic measurements allowed the determination of both inhibition type and strength; N6-(3-aminopropyl)adenine and N6-(4-amino-cis-but-2-enyl)adenine produced reversible inhibition (Ki approximately 10(-5) - 10(-4) M) whereas, N6-(4-aminobut-2-ynyl)adenine could be considered a powerful inactivator.  相似文献   

14.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

15.
Gerber JG  Rhodes RJ  Gal J 《Chirality》2004,16(1):36-44
Methadone is a clinically used opioid agonist that is oxidatively metabolized by cytochrome P450 (CYP) isoforms to a stable metabolite, EDDP. Methadone is a chiral drug administered as the racemic mixture of (R)-(-)- and (S)-(+)-methadone, but (R)-methadone is the active isomer. The cytochrome P450 (CYP) isoform involved in methadone's metabolism is thought to be CYP3A4, but human drug-drug interaction studies are not consistent with this. The ability of the common human drug-metabolizing CYPs (obtained from baculovirus-infected insect cell supersomes) to generate 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrilidine (EDDP) from racemic methadone was examined and then determined if the CYP isoforms metabolized methadone stereoselectively. Only CYP2B6, 2C19, and 3A4 generated measurable EDDP from 1 microg/ml of racemic methadone. The hierarchy of EDDP generation was CYP2B6 > CYP2C19 >/= CYP3A4. At 10 microg/ml of methadone, CYP2C9 and CYP2D6 also generated EDDP, but in at least 10-fold lower quantities than CYP2B6. Michaelis-Menten kinetic data demonstrated that CYP2B6 had the highest V(max) (44 ng/min/10pmol) and the lowest K(m) (12.6 microg/ml) for EDDP formation of all the CYP isoforms. In human liver microsomes with high and low CYP2B6 expression but equivalent CYP3A4 expression, high CYP2B6 expression microsomes generated twice the amount of EDDP from 10 microg/ml of methadone than low CYP2B6 expression microsomes. When stereoselective metabolism of racemic methadone by CYP2B6, 2C19, and 3A4 was examined using an enantiospecific methadone assay, CYP2B6 preferentially metabolized (S)-methadone, CYP2C19 preferentially metabolized (R)-methadone, and CYP3A4 showed no preference. These data suggest that multiple CYPs metabolized methadone but CYP2B6 had the highest V(max)/K(m). In addition, only CYP2B6 and 2C19 showed stereoselective metabolism. Our data could explain why the plasma concentration ratio of R/S methadone is variable and why drugs that induce CYP2B6 such as nevirapine and efavirenz also induce methadone metabolism, while the CYP3A4 inducer rifabutin has no effect on methadone pharmacokinetics.  相似文献   

16.
D C Pike  M T Hora  S W Bailey  J E Ayling 《Biochemistry》1986,25(17):4762-4771
Homologues of 6-methyl-7,8-dihydropterin (6-Me-7,8-PH2) and 6-methyl-5,6,7,8-tetrahydropterin (6-Me-PH4), expanded in the pyrazine ring, were synthesized to determine the effect of increased strain on the chemical and enzymatic properties of the pyrimidodiazepine series. 2-Amino-4-keto-6-methyl-7,8-dihydro-3H,9H-pyrimido[4,5-b] [1,4]diazepine (6-Me-7,8-PDH2) was found to be more unstable in neutral solution than 6-Me-7,8-PH2. Its decomposition appears to proceed by hydrolytic ring opening of the 5,6-imine bond, followed by autooxidation. 6-Me-7,8-PDH2 can be reduced, either chemically or by dihydrofolate reductase (Km = 0.16 mM), to the 5,6,7,8-tetrahydro form (6-Me-PDH4). This can be oxidized with halogen to quinoid dihydropyrimidodiazepine (quinoid 6-Me-PDH2), which is a substrate for dihydropteridine reductase (Km = 33 microM). Whereas quinoid 6-methyldihydropterin was found to tautomerize to 6-Me-7,8-PH2 in 95% yield in 0.1 M tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), pH 7.4, quinoid 6-Me-PDH2 gives only 53% 6-Me-7,8-PDH2, the remainder decomposing via an initial opening of the diazepine ring. Additional evidence for the extra strain in the pyrimidodiazepine system is the cyclization of quinoid 6-N-(2'-aminopropyl)divicine to quinoid 6-Me-PH2 in 57% yield in 0.1 M Tris-HCl, pH 7.4. By comparison, no quinoid 6-Me-PDH2 is formed from the homologue quinoid 6-N-(3'-aminobutyl)divicine. A small (2%) yield of 6-Me-PDH4 is found if the unstable C4a-carbinolamine intermediate is trapped by enzymatic dehydration and reduction. Although phenylalanine hydroxylase utilizes 6-Me-PDH4 (Km = 0.15 mM), the maximum velocity of tyrosine production is 20 times slower than that with 6-Me-PH4, indicating that a ring opening reaction is not a rate-limiting step in the hydroxylase pathway. Further, the maximum velocities of 2,5,6-triamino-4(3H)-pyrimidinone, 2,6-diamino-5-(methylamino)-4(3H)-pyrimidinone, and 2,6-diamino-5-(benzylamino)-4(3H)-pyrimidinone span a 35-fold range. These cofactors would theoretically form the same oxide of quinoid divicine if oxygen activation involves a carbonyl oxide intermediate. Thus, the limiting step is also not transfer of oxygen from this hypothetical intermediate to the phenylalanine substrate.  相似文献   

17.
An enzyme with 6-pyruvoyl tetrahydropterin (6PPH4) (2'-oxo)reductase activity was purified to near homogeneity from whole rat brains by a rapid method involving affinity chromatography on Cibacron blue F3Ga-agarose followed by high performance ion exchange chromatography and high performance gel filtration. The enzyme has a single subunit of Mr 37,000 and has a similar amino acid composition to previously described aldoketo reductases. The reductase activity is absolutely dependent on NADPH, will only catalyze the reduction of the C-2'-oxo group of 6PPH4, and is inactive towards the C-1'-oxo group. However, the enzyme also shows high activity towards nonspecific substrates, such as 4-nitrobenzaldehyde, phenanthrenequinone, and menadione. The role of this 6PPH4 reductase in the formation of tetrahydrobiopterin (BH4) was investigated. Measurements were made of the rate of conversion of 6PPH4, generated from dihydroneopterin triphosphate with purified 6PPH4 synthase, to BH4 in the presence of mixtures of pure sepiapterin reductase and the 6PPH4 (2'-oxo)reductase purified from rat brains. The results suggest that when sepiapterin reductase activity is limiting, a large proportion of BH4 synthesis proceeds through the 6-lactoyl intermediate. However, when sepiapterin reductase is not limiting, most of the BH4 is probably formed via reduction of the other mono-reduced intermediate which is produced from 6PPH4 by sepiapterin reductase alone.  相似文献   

18.
A novel phosphonoglycosphingolipid named SGL-I containing 3 mol of 2-aminoethylphosphonate residues was isolated from the skin of a sea gastropod, Aplysia kurodai. The saccharide moiety of the glycolipid was characterized as 4-O-methyl-GlcNAc alpha 1----4GalNAc alpha-1----3 [6'-O-(2-aminoethylphosphonyl)Gal alpha 1----2] (2-aminoethylphosphonyl----6)Gal beta 1----4(2-aminoethylphosphonyl----6) Glc beta 1----1-ceramide. The major aliphatic components of the ceramide portion were palmitic acid, stearic acid, octadeca-4-sphingenine, and anteisononadeca-4-sphingenine. This glycolipid is unique in containing 4-O-methyl-N-acetylglucosamine and 3 mol of 2-aminoethylphosphonate residues, one of which is attached to C-6 of glucose.  相似文献   

19.
Although 2-O-sulfated L-iduronic acid (IdoA) residues have been known to occur in heparin, 2-O-sulfated D-glucuronic acid (GlcA) residues have been reported only recently (Bienkowski, M. J., and Conrad, H. E. (1985) J. Biol. Chem. 250, 356-365). Disaccharides prepared by cleavage of heparin and N-deacetylated chondroitin 6-sulfate with nitrous acid were used to demonstrate a new sulfatase that catalyzed the removal of the 2-O-sulfate substituents from GlcA but not IdoA residues. The deamination products were labeled by NaB3H4 reduction to give disaccharides from heparin and chondroitin sulfate which had reducing terminal 2,5-anhydro-D-mannitol ([3H]AManR) and 2,5-anhydro-D-talitol ([3H]ATalR) residues, respectively. IdoA(2-SO4)-[3H]AManR(6-SO4) from heparin and GlcA(2-SO4)-[3H]ATalR(6-SO4) from chondroitin sulfate were purified for use as substrates. GlcA(2-SO4)-[3H]AManR(6-SO4) was prepared by epimerization of IdoA(2-SO4)-[3H]AManR(6-SO4) with hydrazine at 100 degrees C. Lysosomal enzyme preparations from chick embryo chondrocytes and from two normal human fibroblast cell lines catalyzed the removal of the 2-O-SO4 substituent from the uronic acid residues of IdoA(2-SO4)-[3H]AManR(6-SO4), GlcA(2-SO4)-[3H] AManR(6-SO4), and GlcA(2-SO4)-[3H]ATalR(6-SO4). In contrast, a lysosomal enzyme preparation from a human fibroblast cell line deficient in idurono-2-sulfatase (Hunter's-syndrome), which had no activity on the IdoA(2-SO4)-[3H]AManR(6-SO4), converted GlcA(2-SO4)-[3H]AManR(6-SO4) to a mixture of GlcA-[3H] AManR(6-SO4) and [3H]AManR(6-SO4). This enzyme also converted GlcA(2-SO4)-[3H]ATalR(6-SO4) to a mixture of GlcA-[3H]ATalR(6-SO4) and [3H]ATalR(6-SO4). Digestion of both GlcA(2-SO4)-[3H]AManR(6-SO4) and GlcA(2-SO4)-[3H]ATalR(6-SO4) was inhibited by 35SO2-4 and was arrested at the monosulfated disaccharide stage by 1,4-saccharolactone. The glucurono-2-sulfatase exhibited a pH optimum of 4. The results indicate that there exists a separate sulfatase for the removal of sulfate substituents from C-2 of GlcA residues in glycosaminoglycans.  相似文献   

20.
Kumar NN  Swamy KC 《Chirality》2008,20(6):781-789
Diastereoselective synthesis and characterization of chiral unsymmetrical tris-spirocyclic cyclotriphosphazenes based on chiral 1,1'-bi-2-naphthol (BINOL) are reported. Specifically, the chiral compounds (-)N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](O-2,2'C(6)H(4)-C(6)H(4)O)Cl(2) [(-)-4] and (-)N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](OCH(2)CH(2)NMe)(2) [(-)-5] are prepared by starting with the chiral mono-spiro compound (-)N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)]Cl(4) [(-)-3]. Synthesis of four other chiral spirocyclics, N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](OCH(2)CH(2) NMe)(O-2,2'C(6)H(4)-C(6)H(4)O)[(-)-6 and (+)-6], N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](NMe(2))(4) [(-)-7], N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](O-2,2'C(6)H(4)-C(6)H(4)O)(NMeCH(2)CH(2)OH)(2) [(-)-8 and (+)-8], and N(3)P(3)[1,1'-O(2)(C(10)H(6))(2)](O-2,2'C(6)H(4)-C(6)H(4)O)[NHCH(2)CH(2)CH(2)Si(OEt)(3)](2) (9) is also reported herein. Compounds 4-6 are obtained in the solid state diastereoselectively and their X-ray structures have been determined and discussed. The diastereoselectivity is also shown by structural characterization of two distinct isomers in the case of 6 [(-)-6 and (+)-6, respectively] by starting with precursor of 3 having (R) or (S)-BINOL residue. The (1)H NMR spectra of 7 and 8 exhibit doublets with virtual coupling for the methyl protons, consistent with the chiral nature of the binaphthoxy residue. The potential of 9, which hydrolyzes readily in CDCl(3) solution, as a useful precursor for chiral polymer applications is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号