首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study demonstrates the establishment of embryogenic tissue from seeds and (seedling-derived hypocotyls) shoot base explants derived from seedlings of Eremochloa ophiuroides. The highest percentage of callus induction obtained from seed and young shoot base explants was 52.0% and 66.6% on Murashige and Skoog (MS) basal media supplemented with 9.0 μM and 18.1 μM 2,4-dichlorophenoxyacetic acid (2,4-D), respectively. The type of callus obtained from both types of explants was off-white to yellow in color and non-friable and shiny in texture. Excised callus from the explants was subcultured onto fresh media of the same recipe for further proliferation. After 10–12 d of subculture, a yellow, globular, friable embryogenic callus was obtained from the initial callus. The highest percentage of embryogenic calli obtained at 40.0% was observed on media containing 2.2 μM 2,4-D. The highest regeneration rate of 46.6% was observed on MS media supplemented with 0.4 μM 2,4-D and 2.2 μM benzylaminopurine (BA). Regenerated shoots were rooted in MS basal medium. Plants with well-developed roots were transferred to pots containing a soil mix and acclimatized in greenhouse conditions. Four weeks post-transfer, acclimatized plants showed 100% survival and remained healthy and green. This is the first report of a successful method for induction of somatic embryogenesis with subsequent plant regeneration in centipede grass and demonstrates the establishment of embryogenic callus and efficient plant regeneration with potential application in the development of genetic transformation systems for centipede grass.  相似文献   

2.
Experiments have been carried out on seedling and primary leaf explants of Gentiana kurroo Royle. Morphogenic capacities of cotyledons, hypocotyls and roots were investigated using MS (1962) medium supplemented with 4.64 μM kinetin and 2.26, 4.52 or 9.04 μM 2,4-D. Percentage of callusing explants for each combination was inversely proportional to numbers of obtained embryos. Cotyledons showed the highest morphogenic capabilities. To assess the morphogenic potential of leaf explants, 189 combinations of auxin (NAA, dicamba and 2,4-D) and cytokinin (kinetin, BAP, zeatin, CPPU and TDZ) in different concentrations were tested. The presence of NAA with BAP and dicamba with zeatin produced the greatest number of differentiated somatic embryos. Microscopic analysis of responsive explants led to identifying rhizogenic centers, non-embryogenic and embryogenic cells. The best embryo conversion into germlings was obtained on MS medium containing 4.46 μM kinetin, 1.44 μM GA3 and 2.68 μM NAA or ½ MS. Both media were supplemented with 4.0% sucrose and 8.0% agar. Depending on explant origin and conversion medium, 55.8–71.0% of somatic embryos developed into germlings and plants.  相似文献   

3.
Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass and pasture grass. To explore the potential use of biotechnical tools in breeding of centipedegrass, we established an efficient plant regeneration system for this species. Four basal media and 24 combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (BAP) were examined for their effects on callus induction from mature seed explants. Twenty combinations of naphthaleneacetic acid (NAA) and BAP were tested for their effect on plant regeneration. Results indicated that Murashige and Skoog basal medium supplemented with 4.5 mg l−1 2,4-D and 1 mg l−1 BAP was the best medium for callus induction, while the combination of 2 mg l−1 BAP and 1 mg l−1 NAA induced the highest rate of regeneration and development of shoots and roots. This work provides a basis for the breeding of centipedegrass through somaclonal variation and genetic transformation.  相似文献   

4.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

5.
Best callus initiation was obtained when single-node explants of Fuchsia hybrida were incubated in the light on Gamborg B5 medium containing 5×10-6 M indoleacetic acid and benzylaminopurine at 5×10-7 M or 10-6 M. Healthy callus proliferation was maintained in darkness on full-strength B5 medium supplemented with 5×10-6 M IAA and 5×10-7 M BAP. Regeneration from callus was obtained in 3 to 6 weeks, using half-strength hormone-free Campbell & Durzan medium.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4 dichlorophenoxyacetic acid - IAA indoleacetic acid - IBA indolebutyric acid - NAA -naphthaleneacetic acid - SE standard error  相似文献   

6.
The capacity for indirect shoot organogenesis of leaf and root explants of four Dieffenbachia cultivars were examined on a modified Murashige and Skoog (MS; Physiol Plant 15:473–495, 1962) medium supplemented with different plant growth regulators in 112 combinations. Callus formation was only observed from leaf explants on MS supplemented with 1–10 μM thidiazuron (TDZ) and 0.5–1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D) regardless of cultivars. The combination of 5 μM TDZ and 1 μM 2,4-D resulted in the greatest callus formation frequency among the four cultivars tested. Significant differences in callus and shoot formation from leaf explants were also observed among cultivars. Cultivars Camouflage, Camille, Octopus, and Star Bright produced green nodular, brown nodular, yellow friable, and green compact calli with corresponding maximum callus formation frequencies of 96%, 62%, 54%, and 52%, respectively. A maximum of 6.7 shoots/callus was observed in cv. Camouflage, followed by cvs. Camille and Star Bright at 3.7 and 3.5, respectively. Calli of cv. Octopus displayed no capacity for shoot organogenesis. Regardless of cultivar, callus formation was not observed on root explants. Regenerated shoots were successfully acclimatized in a shaded greenhouse condition with 100% survival.  相似文献   

7.
Summary This study investigated factors affecting the production of somatic embryos in Blighia sapida (ackee). Explants obtained from fully expanded leaves or cotyledons of immature zygotic embryos excised from brown (BSCZE) or green seeds (GSCZE) were cultured on Murashige and Skoog medium supplemented with 9, 18 and 36μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.4 or 22.1 μM benzylaminopurine (BAP) or 0.2–19.9 μM thidiazuron (TDZ). Leaf explants grown on media supplemented with the different combinations of 2,4-D and BAP formed callus, but they were non-embryogenic, while explants were not responsive on TDZ-supplemented media. GSCZE explants grown in the presence of 2,4-D/BAP combinations of 9/4.4, 18/4.4 or 36/4.4 μM formed non-embryogenic callus profusely, but explants gave rise to organized globular protuberances (GPs) and non-embryogenic callus on media containing TDZ, with the best concentration at 0.4 μM. BSCZE explants grown on TDZ-supplemented media also formed callus, but no GPs were detected. When GPs were cultured on media containing TDZ and abscisic acid they (ABA), gave rise to the highest number of somatic embryos. The medium was also beneficial for the development of somatic embryos from the globular to cotyledonary stage.  相似文献   

8.
Organogenic cultures were induced from zygotic embryo and megagametophyte explants of the Central American cycad species, Dioon edule. Plant growth medium consisted of B5 major salts, Murashige and Skoog minor salts and organics, 400 mg l−1 glutamine, 100 mg l−1 arginine, 100 mg l−1 asparagine, 60 g l−1 sucrose, 8 g l−1 Difco Bacto agar and was supplemented with kinetin (0 – 13.94 μM) and 2,4-dichlorophenoxyacetic acid (2,4-D) (0 – 9.05 μM) arranged as a 5×4 factorial in a randomized block design. Callus initiation occurred on a wide range of medium formulations from megagametophyte explants; however, shoot formation occurred only on medium supplemented with 2.26 μM 2,4-D. In comparison, callus initiation from explanted zygotic embryos occurred on fewer medium formulations, and adventitious shoot induction occurred from callus on formulations with 9.29–13.94 μM kinetin + 0.45–9.05 μM 2,4-D. Rooted shoots, derived from megagametophyte and zygotic embryo cultures, have been regenerated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Summary Twelve cultivars of Brassica juncea grown in different agroclimatic regions of the world were tested for their ability to regenerate in vitro from hypocotyl explants and, accordingly, were divided into three groups. One group of cultivars regenerated on MS medium supplemented with 2,4-D, BAP and with NAA, BAP combinations; another group regenerated only on MS with 2,4-D, BAP; and the third group showed very low regeneration on both of these combinations. Inclusion of silver nitrate in the medium was essential for high frequency of regeneration. In general, Indian cultivars were more responsive than the cultivars of CIS and Australian origin. Using the media optimal for regeneration and an Agrobacterium-based binary vector carrying hpt and gus-intron genes, conditions for genetic transformation of B. juncea hypocotyl explants were optimized. Transformation frequencies, identified by GUS staining at the initial stages of growth, were lower on MS medium with 2,4-D, BAP than on MS with NAA, BAP. Plants resistant to 20 g/ml hygromycin were regenerated at a frequency of 11–36% from hypocotyl explants and were shown to be transformed by Southern blotting, GUS staining and progeny analysis.  相似文献   

10.
Abstract    Helicteres isora is a medicinal plant effective against asthma, diabetes, hypolipidemia, HIV, polio besides a good source of diosgenin. Seed dormancy and low natural fruit production rate make this plant a perfect candidate for developing an in vitro regeneration method. However, to date, no such work has been procured in this plant. An efficient method for plant regeneration via shoot organogenesis from callus cultures has been developed using nodal explants in H. isora. Murashige and Skoog (MS) media counting 2,4-Dichlorophenoxyacetic acid (2,4-D, 2.26 to 13.57 μM), Indole-3-acetic acid (IAA, 2.85 to 17.13 μM), Indole-3-butyric acid (IBA, 2.46 to 14.70 μM), 6-Benzylaminopurine (BA, 2.22 to 13.32 μM) and Kinetin (Kin, 2.32 to 13.92 μM) either singly or in the following combinations (IAA + BA; IAA + Kin, and BA + Kin) produced granular callus except BA + Kin which resulted in compact, hard, greenish-white (CHGW) callus. The optimum CHGW callus (2.62 g fresh weight/ explant) was produced on MS media with 13.32 μM BA + 2.32 μM Kin with over 93% callus induction frequency. Optimum shoot organogenesis (67% frequency) was achieved in CHGW callus with lower level of BA (2.22 μM) and Kin (2.32 μM) and produced 3.2 shoots/0.5 g callus within 35 d of culture. Microshoots were rooted successfully (62% frequency) after 35 d of culture on 1/2MS containing 4.90 μM IBA and hardened off. Antioxidant enzymes such as catalase, peroxidase, polyphenol oxidase, and biochemical parameters viz. hydrogen peroxide, reducing and nonreducing sugars, starch, proteins, phenols, and proline contents were studied in regenerating and nonregenerating CHGW calluses to establish a correlation between these parameters and shoot morphogenesis. All the enzyme activities and biochemical parameters were found more in regenerating callus than in nonregenerating except phenols.  相似文献   

11.
Vanilla planifolia is a tropical orchid mainly known for the aromatic flavor of its cured pods. Callus cultures were initiated from leaf and nodal explants of V. planifolia. Leaf explants showed better callus initiation than the nodal explants with callus biomass production maximal when cultured on Murashige and Skoog (MS) basal medium containing 4.52 mM 2,4-dichlorophenoxy acetic acid and 2.22 mM benzyladenine (BAP). Callus transferred to MS basal medium supplemented with 13.32 μM BAP, and 13.43 μM naphthaleneacetic acid (NAA) showed superior growth response and produced 14.0 ± 1.0 shoots with an average length of 3.6 ± 0.1 cm after 40 d. Subsequent transfer of the proliferated shootlets to MS basal medium supplemented with 8.88 μM BAP and 8.08 μM NAA produced 12.3 ± 0.14 plantlets with an average height of 3.6 cm ± 0.10 cm. All plantlets produced profuse rooting within 35–40 d after transfer to half-strength MS basal medium supplemented with NAA in combination with indole-3-acetic acid. Rooted plantlets were transferred for hardening, with 80% of the plantlets becoming successfully established in the field. Potentially, more than 100,000 plantlets could be produced within eight subcultures from callus obtained from leaf explant through the methods described here.  相似文献   

12.
Camellia nitidissima Chi (Theaceae) is a world-famous economic and ornamental plant with golden-yellow flowers. It has been classified as one of the rarest and most endangered plants in China. Our objective was to induce somatic embryogenesis, shoot organogenesis and plant regeneration for C. nitidissima. Three types of callus (whitish, reddish and yellowish) were induced from immature cotyledons on improved woody plant medium (WPM) with different plant growth regulators (PGRs). Among the callus, whitish callus was induced by 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and reddish and yellowish callus were induced by strongly active cytokinins, thidiazuron (TDZ) or 6-benzylaminopurine (BAP), singly or combined with weakly active auxin, α-naphthaleneacetic acid (NAA). The embryogenic callus could differentiate into somatic embryos, nodular embryogenic structures (large embryo-like structures) or adventitious shoots depending on the PGR used in WPM. BAP was best for adventitious buds and zeatin was best for somatic embryogenesis while kinetin (Kt) was best for the formation of nodular embryogenic structures. The three regeneration pathways often occurred in the same embryogenic callus clumps. Most shoots (80.0%) developed roots in WPM supplemented with 24.6 μM IBA and 0.3 μM NAA while 47.5% of somatic embryos could germinate directly and develop into plantlets on induction medium supplemented with 0.9 μM BAP and 0.1 μM NAA. The nodular embryogenic structures could be sub-cultured and cyclically developed in one of two differentiation pathways: shoot organogenesis or somatic embryogenesis. Plantlets derived from shoot buds rooted and somatic embryos germinated when transplanted into soil in a greenhouse; 66.7% of plantlets from shoot culture and 78.6% of plantlets from somatic embryos survived after 8 weeks’ acclimatization.  相似文献   

13.
The antidiabetic properties of Cecropia obtusifolia are attributed to chlorogenic acid (CGA) and isoorientin (ISO) phenolic compounds; both compounds possess hypoglycemic, hypolipidemic, and antioxidant properties. As a potential strategy for an adequate supply of authentic plant raw material, the aim of this study was to establish in vitro conditions for the development of cell suspension cultures that produce these bioactive compounds. Callus cultures of leaf explants from acclimatized tree and in vitro plantlets were set up using different auxin levels; treatments with 2,4-dichlorophenoxyacetic acid (2,4-D) and α-naphthalene acetic acid (NAA) to 8.92 μM with 6-benzylaminopurine (BAP) at 2.22 μM stimulate highest callus production. Seedling cotyledon, hypocotyl, leaf, and stem explants developed calli bearing roots with 2,4-D. With NAA, hypocotyl, cotyledon, and leaf explants developed morphogenic calli; 75% of stem explants formed calli, and the remaining calli developed shoots. Determined CGA concentrations in calli were similar to those detected in the leaves of wild trees, and ISO was not produced. Cell suspension cultures were established from leaf explants friable calli with 8.92 μM 2,4-D in combination with 2.22 μM BAP, employing 4 and 5% inocula in fresh weight; CGA levels were maintained and ISO was produced only at the end of logarithmic growth. On diminishing nitrate content in Murashige and Skoog (MS) medium to 8.0 mM, maximum cell biomasses diminished, CGA production is increased and twice with 16.0 and, instead of CGA production is tripled and quadrupled with 16.0 and 8.0 mM nitrates, respectively, and ISO synthesis was induced earlier and for a longer time period, increasing its levels at the end of culture. Two compounds with ultraviolet spectra similar to those of caffeic and ferulic acids were formed. Our results offer a protocol of cell suspension cultures for C. obtusifolia bioactive production and hypoglycemic property conservation.  相似文献   

14.
This report deals with micropropagation of the critically endangered and endemic Turkish shrub, Thermopsis turcica using callus, root and cotyledonary explants. Callus cultures were initiated from root and cotyledon explants on MS medium supplemented with 0.5–20 μM NAA or 2,4-D. The root explants were found to be better in terms of quick responding and callusing percentages as compared to the cotyledons. Organogenic callus production with adventitious roots and shoots were obtained on MS medium with only NAA. The calli obtained with NAA, root and cotyledonary explants were cultured with BA and kinetin (2–8 μM) alone or in combination with a low level (0.5 μM) of 2,4-D or NAA. The best regeneration of shoots from root explants was observed on hormone-free MS medium. NAA with BA or kinetin in the medium improved shoot induction from the calli obtained with NAA. Maximum percentage of shoots (93.3%), maximum number of shoots (6.2) and maximun length of shoots (8.22 cm) were achieved from cotyledonary explants at 4 μM BA and 0.5 μM NAA. The presence of 0.5 μM or higher levels of 2,4-D in shoot induction medium inhibited the regeneration in T. turcica explants. 83% of in vitro rooting was attained on pulsed-IBA treated shoots. The regenerated plants with well developed shoots and roots were successfully acclimatized. Application of this study’s results has the potential to conserve T. turcica from extinction.  相似文献   

15.
Somatic embryos were induced on roots excised from in vitro plants of Prunus avium× pseudocerasus `Colt'. On medium containing 6-benzylamino purine (BAP, 1.5 μM) and 2,4-dichlorophenoxyacetic acid (2,4-D, 15 μM), a mean of 25 (s.e. ± 2.0) somatic embryos were produced on intact root systems and 15 (s.e. ± 1.7) on roots systems cut into 10 mm pieces. Most somatic embryos were formed directly on intact roots and indirectly (from callus) on sectioned roots. A mean of 2.5 (s.e. ± 0.25) secondary embryos per primary embryo were formed directly on primary embryos after they were transferred to medium containing BAP (1.5 μM), indole-3-butyric acid (10 μM) and 2,4-D (5 μM). After transfer to a medium containing BAP (2 μM) and gibberellic acid (GA3, 3 μM), shoots developed in 75% (s.e. ± 7.3) of the embryos. Somatic embryos were not induced on explants of in vitro roots or shoots of P. avium, and were induced infrequently on zygotic embryos, although a wide range of media were tested. Possible reasons for the contrasting embryogenic ability of `Colt' and P. avium are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
An efficient in vitro micropropagation system for Clivia miniata Regel was developed using basal tissues of young petals and young ovaries as explants. For callus induction, explants were incubated on Murashige and Skoog (MS) medium containing either 2.22 μM 6-benzyladenine (BA) and 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 4.44 μM BA, 5.37 μM α-naphthaleneacetic acid (NAA), and 9.05 μM 2,4-D. Moreover, callus was induced from young ovaries when these were incubated on MS medium containing 8.88 μM BA, 10.74 μM NAA, and 9.05 or 18.10 μM 2,4-D. Subsequently, callus was transferred to MS medium supplemented with kinetin (KT) and NAA for shoot organogenesis. Frequency of shoot regeneration from petal-derived callus was highest when callus was transferred to medium containing 2.69 μM NAA with either 9.29 or 13.94 μM KT. Shoot regeneration frequency from ovary-derived callus was highest when this callus was transferred to medium containing 9.29 μM KT and 10.74 μM NAA. Overall, different explant types exhibited different organogenic capacities wherein, young petals had higher shoot regeneration frequencies than young ovaries. The highest rooting frequency (98.25 ± 3.04%) was obtained when shoots were transferred to half-strength MS medium without plant growth regulators. Regenerated plantlets were transplanted to soil mix and acclimatized, yielding a 96.80% survival frequency. Only 0.6% of regenerated plantlets exhibited morphological changes. The diploid status (2n = 22) of regenerated plantlets was determined using chromosome counts of root-tips. Moreover, inter-simple sequence repeats were used to assess the genetic fidelity of regenerated plantlets. Overall, regenerated plants shared 90.5–100.0% genetic similarities with mother plants and 89.0–100.0% similarities with each other.  相似文献   

17.
Efficient plant regeneration through somatic embryogenesis was achieved in Polyscias filicifolia. Embryogenic calluses were induced on Murashige and Skoog (MS) basal medium supplemented with 0.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l−1 benzylaminopurine (BAP; type I callus) and on MS medium with 2.0 mg l−1 2,4-D and 0.01 mg l−1 kinetin (type II callus) from leaf explants of a 2-yr-old plant. Primary somatic embryos (PSEs) developed after four passages of suspension culture established from embryogenic callus when cultured in liquid half-strength MS medium (1/2 MS) without growth regulators. PSEs in the cotyledonary stage were multiplied by adventitious embryogenesis. Single secondary somatic embryos (SSEs) or their clusters developed at the base of PSE hypocotyls and regenerated into plantlets in a one-step process on plant growth regulator-free 1/2 MS medium. Low sucrose concentration of 15 g l−1 promoted development of normal SSEs. All SSEs regenerated into single, well-rooted plantlets on a Nitsch and Nitsch medium supplemented with 0.5 mg l−1 kinetin, 0.1 mg l−1 indole-3-butyric acid, and 10 mg l−1 adenine sulfate. Subsequent two subculture cycles on the same medium were necessary to obtain plantlets sufficiency developed to allow successful transfer to the soil. Rooted plantlets were established in a peat mixture with 90% survival, with the plants showing normal morphological characteristics.  相似文献   

18.
Summary A tissue culture of five wild species of the Secale genus, i.e., S. africanum (Stapf.), S. ancestrale (Zhuk.), S. kuprianovii (Grossh), S. segetale (Rosher.), and S. vavilovii (Grossh), from immature embryos of sizes (stages) varying between 1.0 mm to 3.0mm, cultured on MS (1962) mineral nutrient medium supplemented with 0.62 mg/1–5.0 mg/1 of 2,4-D, was established. Initially various types of callus were observed and a correlation between genotype, size of explant and 2,4-D concentration was found. The best embryogenic response was observed when explants were smaller than 1.0 mm. Induction of somatic embryogenesis of 2.0 mm–3.0 mm explants required a higher concentration of 2,4-D. Most embryoids were formed in the presence of 5.0 mg/l of 2,4-D. Secale africanum and S. kuprianovii appeared to have the highest embryogenic capacity among the five investigated species. For embryoids germination to plantlets the MS medium supplemented with GA3 and cytokinins was used. Ultimately, out of the 932 regenerants obtained 364 originated from somatic embryogenesis.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 deGibberellic acid - BAP Benzylaminopurine  相似文献   

19.
A protocol for in vitro regeneration via indirect organogenesis for Phaseolus vulgaris cv. Negro Jamapa was established. The explants used were apical meristems and cotyledonary nodes dissected from the embryonic axes of germinating seeds. Several auxin/cytokinin combinations were tested for callus induction. The best callus production was obtained with medium containing 1.5 μM 2,4-dichlorophenoxyacetic acid. After 2 weeks of growth calli were transferred to shooting medium containing 22.2 μM 6-benzylaminopurine. Shoots regenerated with a frequency of approximately 0.5 shoots per callus, and upon transfer to rooting medium these shoots produced roots with 100% efficiency. Histological analyses of the regeneration process confirmed the indirect organogenesis pattern. Greenhouse grown regenerated plants showed normal development and were fertile. The protocol was reproducible for other nine P. vulgaris cultivars tested, suggesting a genotype independent procedure.  相似文献   

20.
In vitro protocols for plant regeneration of Arachis correntina through both somatic embryogenesis and organogenesis were developed using immature leaves as explants. Morphologically normal somatic embryos were obtained on culture media composed of 20.70 or 41.41 μM picloram (PIC) with the addition of 0.044 μM 6-benzylaminopurine (BA), resulting in a 33 and 24% of conversion into plants, respectively. The source of explants and the developmental stage of the leaves had a marked effect on somatic embryogenesis. The second folded immature leaves from in vitro growing plants were the most responsive producing up to 30% embryogenesis in MS+41.41 μM PIC. Embryos converted into plants after transfer to MS medium devoid of growth regulators and these plants were successfully acclimatised. Adventitious shoots were obtained on culture media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA) with or without 0.044 μM BA, achieving plant regeneration in the induction media. The highest percentage of bud formation was obtained on culture medium composed of␣MS+10.74 μM NAA+0.044 μM BA (12.5%). Roots were formed on all culture media tested. Regenerated plants were transferred to pots and grew well under greenhouse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号