首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes the synthesis of 3α, 6β, 11β, 17α, 21-pentahydroxy-5β-pregnane-20-one, 3α, 6β, 11β, 17α, 21-pentahydroxy-5α-pregnane-20-one, 3α, 6α, 11β, 17α, 21-pentahydroxy-5β-pregnane-20-one, 3α, 6α, 11β, 17α, 21-pentahydroxy-5α-pregnane-20-one, 3α, 6β, 17α, 21-tetrahydroxy-5β-pregnane-11, 20-dione, 3α, 6β, 17α, 21-tetrahydroxy-5α-pregnane-11, 20-dione, 3α, 6α, 17α, 21-tetrahydroxy-5β-pregnane-1 1, 20-dione and 3α, 6α, 17α, 21-tetrahydroxy-5α-pregnane-11, 20-dione.The gas chromatographic-mass spectrometric properties of these compounds are given. Proof of structure was accomplished using gas chromatography-mass spectrometry, microchemical reactions, optical rotatory dispersion and nuclear magnetic resonance spectroscopy.  相似文献   

2.
Progesterone-4-14C was extensively metabolized during incubation with dispersed trophoblast prepared from chorionic membranes of the 21-day sheep conceptus. Of the metabolites formed, 17,20α-dihydroxypregn-4-en-3-one, 20α-hydroxypregn-4-en-3-one, 20(β-hydroxypregn-4-en-3-one, 5α-pregnane-3α,17,20α-triol, 5β-pregnane-3ga, 17,20α-triol, 5β-pregnane-3g,20α-diol, 3β-hydroxy-5α-pregnan-20-one, 3α-hydroxy-5β-pregnan-20-one, 20β-hydroxy-5β-pregnan-3-one, 5α-pregnane-3,20-dione and 5β-pregnane-3,20-dione were identified. These findings indicate that the sheep conceptus acquires extensive steroid metabolizing capability very early in pregnancy.  相似文献   

3.
S.W. Golf  V. Graef 《Steroids》1980,36(2):167-176
From rat liver microsorties a NAD: 3α-hydroxy-5α-pregnan-20-one oxidoreductase was isolated and purified up to a specific activity of 73 nmol/min.mg by affinity chromatography and DEAE-cellulose chromatography. Various Km-values have been determined. The enzyme exhibits highest affinity for 5α-pregnane-3,20-dione and NADH. The 3-oxo group of 5α-dihydrocortisone (17, 21-dihydroxy-5α-pregnane-3,11,20-trione) was not reduced by the purified enzyme preparation and NADH and no dehydrogenation with NAD was observed of 3α, 11β, 17, 21-tetrahydroxy-5α-pregnan-20-one. The optimal pH for the hydrogenation of the 3-oxo group was at pH 5.3 and for the dehydrogenation at pH 8.9. Disc gel electrophoresis in presence of 0.1% sodium dodecylsulfate yielded a homogeneous preparation.  相似文献   

4.
Anaerobic incubation of prednisone 1 with human intestinal bacteria (HIB) afforded nine metabolites: 5β-androst-1-ene-3,11,17-trione 3, 3α-hydroxy-5α-androstane-11,17-dione 4, 3β,17α,20-trihydroxy-5α-pregnan-11-one 5, 3α,17α-dihydroxy-5α-pregnane-11,20-dione 6, 3α,17α-dihydroxy-5β-pregnane-11,20-dione 7, 3β,17β-dihydroxy-5α-androstan-11-one , 3β,17α-dihydroxy-5α-androstan-11-one , 3α,17β-dihydroxy-5α-androstan-11-one , and 3α,17α-dihydroxy-5α-androstan-11-one . The structures of these metabolites (3–9) were elucidated using several spectroscopic techniques. Computer-aided prediction of potential biological activities of the isolated prednisone metabolites (3–9) revealed potential inhibition of prostaglandin E2 9-ketoreductase (PGE2 9-KR). Docking studies applied to PGE2 9-KR allowed recommendation of the metabolites 4, , and for further pharmacological study as PGE2 9-KR inhibitors.  相似文献   

5.
The metabolism of progesterone and 5α-pregnane-3,20-dione was studied in subcellular fractions of uterus from untreated and estradiol-17β treated immature rats. The reduction of progesterone to 5α-pregnane-3, 20-dione took place in all the particulate fractions of the uterus. The nuclear 5α-reductase accounted for the greatest fraction of enzymatic activity and was stimulated by estradiol treatment in vivo. The 5α-reductase activity in the mitochondrial and microsomal fractions was not increased after estradiol treatment. The reduction of 5α-pregnane-3,20-dione to 3α-hydroxy-5α-pregnan-20-one occurred mainly in the soluble fraction and was only slightly stimulated by estradiol. It proceeded much more rapidly than the reduction of progesterone to pregnanedione. Progesterone was also reduced to 20α-hydroxy-4-pregnen-3-one by a soluble enzyme whose activity was increased after estradiol-17β treatment.  相似文献   

6.
[4 -14C]-Progesterone was applied to the leaves of growing pea plants, Pisum sativum. After 3 weeks, about 50% of the administered steroid was reduced, about 20% being reduced to 5α-pregnane-3α,20β-diol as the major metabolite. The radioactivities of 5α-pregnane-3α,20α-diol and 5α-pregnane-3α,20β-diol after 3 weeks were more than twice those after one week. The following radioactive metabolises were also isolated: 5α-pregnane-3,20-dione; 20α-hydroxy-4- pregnen-3-one; 20β-hydroxy-4-pregnen-3-one; 3α-hydroxy-5α-pregnan-20-one; 3α-hydroxy-5β-pregnan-20-one; 3β-hydroxy- 5α-pregnan-20-one; 20β-hydroxy-5α-pregnan-3-one; 5α-pregnane-3β,20β-diol; and 5β-pregnane-3α,20β-diol. The radioactivities of the 5α-pregnane derivatives were considerably higher than those of the corresponding 5β-pregnane derivatives.  相似文献   

7.
5β-Pregnane-3α, 17α, 20α, 21-tetrol (l) and 5β-pregnane-3α, 17α 20β, 21-tetrol (II) have been isolated and identified from the urine of a girl with congenital adrenal hyperplasia. The total 5β-pregnane-3α, 17α, 20(α+β),21-tetrol consisted of 60% of I and 40% of II. The final identity of the compounds was established by gas chromatography — mass spectrometry. The mass spectra of the two trimethylsilyl isomers were closely related to each other in contrast to the spectra of five other pairs of C21-C-20(α and β)-hydroxy steroid-trimethylsilyl-ethers. The mass spectra of free I and II also exhibited many common features, but were less similar to each other than their trimethylsilyl derivatives.  相似文献   

8.
I Huhtaniemi 《Steroids》1973,21(4):511-519
In order to study further the metabolism of neutral steroids in human fetal adrenal and liver tissue the fractions of unconjugated neutral steroids isolated from these tissues were analyzed by gas-liquid chromatography and gas chromatography — mass spectrometry. In the adrenals, pregnenolone and 17-hydroxypregnenolone, but no corticoids, were detected. In the liver, pregnenolone, 3α-hydroxy-5β-pregnan-20-one, 5β-pregnane-3α, 20α-diol and 3β, 16α-dihydroxy-5β-pregnan-20-one were found. Thus, all the free steroids detected were C21 compounds. From these results and those obtained earlier by the analysis of the sulfate-conjugated steroids present in these tissues it is concluded that in the fetal adrenals in situ both sulfated and unconjugated steroids are actively metabolized. Regarding the liver it is obvious that the conjugated metabolites of progesterone are rapidly eliminated from this tissue. Here, pregnenolone is present both in the free and sulfate conjugated form, whereas its metabolites are found only as sulfate conjugates.  相似文献   

9.
It has been shown that the cultured cells of Digitalis purpruea are capable of transforming progesterone (I) to 5α-pregnane-3,20-dione (II), 5α-pregnan-3β-ol-20-one (III), its glucoside (IV), 5α-pregnane-3β,20α-diol (V), its glucoside (VI), 5α-pregnane-3β,20β-diol (VII), its glucoside (VIII), Δ4-pregnen-20α-ol-3-one (IX), its glucoside (X), Δ-pregnen-20β-ol-3-one (XI) and its glucoside (XII). 5α-Pregnan-3β-ol-20-one glucoside (IV), 5α-pregnane-3β,20α-diol glucoside (VI), 5α-pregnane-3β,20β-diol glucoside (VIII), Δ4-pregnen-20α-ol-3-one glucoside (X) and Δ4-pregnen-20β-ol-3-one glucoside (XII) have been found for the first time as new metabolises by plant tissue cultures. A scheme for the biotransformation of progesterone (I) has been proposed, and the reduction and glucosidation activities distinctly have been observed in these cultured cells.  相似文献   

10.
The following steroids have been identified by combined gas chromatography-mass spectrometry in a urine specimen collected from a newborn chimpanzee; 5-androstene-3β, 17α-diol, 3β,16α (and 16β)-dihydroxy-5-androsten-17-one, 5-androstene-3β, 16α, 17β-triol, 5-androstene-3β, 16β, 17α-triol, 5-pregnene-3β, 20α-diol, 5-pregnene-3β, 20α, 21-triol, 3β,21-dihydroxy-5-pregnen-20-one, 3β, 16α-dihydroxy-5-pregnen-20-one, 5-Piegnene-3β, 16α,20α, 21-tetrol, 5-pregnene-3β,17α, 20ξ, 21-tetrol androstenetriolones and androstenetetrols.  相似文献   

11.
Sertoli cells isolated from 17 day old rats were maintained in culture and incubated with [14C]-progesterone for 20 h. The cells and media were extracted with ether/chloroform and the extracts chromatographed two-dimensionally on TLC and the radioactive metabolites visualized by autoradiography. Nine of the metabolites (constituting about 88% of total metabolite radioactivity) were identified by relative mobilities of the compounds and their derivatives in TLC and GC systems and by recrystallizations with authentic steroids as the following: 20α-hydroxypregn-4-en-3-one, 3α-hydroxy-5α-pregnan-20-one, 5α-pregnane3α,20α-diol, 17β-hydroxy-5α-androstan-3-one, 5α-pregnane-3,20-dione, 17-hydroxypregn-4-ene-3,20-dione, testosterone, 5α-androstane-3α,17β-diol and androst-4-ene-3,17-dione. Over 71% of the metabolite radioactivity was due to 20α-hydroxypregn-4-en-3-one, the major metabolite. 5α-reduced pregnanes constituted about 12% and C19 steroids comprised about 2.9% of the radioactivity of the metabolites. Calculation of relative steroidogenic enzyme activities from initial reaction rates suggested the following activities in μunits/mg Sertoli cell protein: 20α-hydroxysteroid oxidoreductase (20α-HS0; 7.71), 5α-reductase (4.77), 3α-HS0 (3.57), 17α-hydroxylase (0.93), 17β-HS0 (0.34) and C17-C20 lyase (0.34). The relatively high rate of steroidogenic enzyme activities in the Sertoli cells of young rats may indicate that Sertoli cells are less dependent on Leydig cell steroidogenesis than has been assumed. Since nearly all the metabolites of progesterone and testosterone are now identified, it is possible to construct a picture of Sertoli cell steroidogenic activity.  相似文献   

12.
The metabolism and excretion of progesterone in different animal species results in several fecal 5-reduced progesterone metabolites (pregnanes), which in recent studies were quantified using progesterone antibodies. To increase the accuracy of fecal 20-oxo-pregnane evaluations in the black rhinoceros, enzyme immunoassays (EIA) using antibodies against 5α-pregnane-3β-ol-20-one 3HS:BSA (5α-20-one EIA) and 5β-pregnane-3α-ol-20-one 3HS:BSA (5β-20-one EIA) were developed. The assays showed high crossreactivities with pregnanes containing a 20-oxo group and are referred to as group-specific; results of these assays were compared with an EIA using an antibody against 6HS-progesterone (4-ene-20-one EIA). Fecal samples of both subspecies of the black rhinoceros (Diceros bicornis michaeli, n = 5, and Diceros bicornis minor, n = 1) during pregnancy were collected 1–3 times/week. HPLC separation showed three major immunoreactive fecal 20-oxo-pregnane peaks; their elution profiles and different crossreactivities in the three EIAs provided strong evidence that these peaks are 5α-pregnane-3, 20-dione, 5α-pregnane-3α-ol-20-one, and 5α-pregnane-3β-ol-20-one. Pregnane values in the pregnant animals continuously increased between months 3–7 and were significantly (P < 0.01) elevated above the levels of nonpregnant animals (0.2 μg/g) by week 11. During months 6–13 concentrations in the 5α-20-one and in the 5β-20-one EIA (5–11 μg/g) were significantly (P < 0.01) higher than in the 4-ene-20-one EIA (1.5–3 μg/g). In conclusion, the immunoreactive fecal 20-oxo-pregnane metabolites in the black rhinoceros are determined more accurately with antibodies against pregnane-20-one-C3 conjugates, as compared with a progesterone antibody. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The ability of bovine liver and fat to metabolize progesterone and also to form glucuronide conjugates with these progestins in vitro was investigated. Tissue supernatants were incubated with [4-14C] progesterone, UDP-glucuronic acid, and a NADPH generating system for 5 hr, at 37°C. Steroids were identified by thin-layer chromatography, high performance liquid chromatography, and recrystallization to a constant specific activity. The total original radioactivity which could not be removed by exhaustive ether extraction (presumptive conjugates) was 44.7 ± 14.2% in liver, 5.0 ± 3.6% in subcutaneous fat, and 3.7 ± 2.2% in kidney fat samples. Progestins identified in liver samples include 5β-pregnane-3α, 20α-diol (free and conjugate), 5β-pregnane-3α, 20β-diol (free and conjugate), 3α-hydroxy-5sB-pregnan-20-one (free and conjugate), 3β-hydroxy-5β-pregnan-20-one (free), 5β-pregnane-3, 20-dione (free), and progesterone (conjugate). Progestins identified in both the free and conjugate fractions of subcutaneous fat and kidney fat samples include progesterone, 3α-hydroxy-5β-pregnan-20-one, 20β-hydroxy-4-pregnen-3-one, and 20α-hydroxy-4-pregnen-3-one. Differences due to sex of bovine used were noted. These results confirm the ability of bovine liver to readily metabolize progesterone and form glucuronide conjugates of these compounds and suggest that adipose tissues take an active role in these actions in cattle.  相似文献   

14.
Digitalis purpurea normal callus suspension culture is capable of metabolizing 5β-pregnane-3,20-dione (1) to 3β-hydroxy-5β-pregnan-20-one (2), 3α-hydroxy-5β-pregnan-20-one (3), 3β-hydroxy-5β-pregnan-20-one glucoside (7) and 3α-hydroxy-5β-pregnan-20-one glucoside (8). Digitalis purpurea habituated callus suspension culture is also capable of metabolizing 1 to 2, 3, 5β-pregnane-3β,20β-diol (5), (7), (8), 5β-pregnane-3β,20α-diol monoglucoside (9) and 5β-pregnane-3α,20α-diol monoglucoside (11). Furthermore, it was observed that 3β-hydroxy-5β-pregnan-20-one (2) is converted to 7, 9 and 11 by both suspension cultures. At the same time, 1, 3, 5 and 8 were detected in normal callus, while 5β-pregnane-3β,20α-diol (4) and 5β-pregnane-3β,20β-diol monoglucoside (10) were present in the habituated callus culture.  相似文献   

15.
Zhang Y  Tobias HJ  Brenna JT 《Steroids》2009,74(3):369-271
Carbon isotope ratio (CIR) analysis of urinary steroids using gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS) is a recognized test to detect illicit doping with synthetic testosterone. There are currently no universally used steroid isotopic standards (SIS). We adapted a protocol to prepare isotopically uniform steroids for use as a calibrant in GCC-IRMS that can be analyzed under the same conditions as used for steroids extracted from urine. Two separate SIS containing a mixture of steroids were created and coded CU/USADA 33-1 and CU/USADA 34-1, containing acetates and native steroids, respectively. CU/USADA 33-1 contains 5α-androstan-3β-ol acetate (5α-A-AC), 5α-androstan-3α-ol-17-one acetate (androsterone acetate, A-AC), 5β-androstan-3α-ol-11, 17-dione acetate (11-ketoetiocholanolone acetate, 11k-AC) and 5α-cholestane (Cne). CU/USADA 34-1 contains 5β-androstan-3α-ol-17-one (etiocholanolone, E), 5α-androstan-3α-ol-17-one (androsterone, A), and 5β-pregnane-3α, 20α-diol (5βP). Each mixture was prepared and dispensed into a set of about 100 ampoules using a protocol carefully designed to minimize isotopic fractionation and contamination. A natural gas reference material, NIST RM 8559, traceable to the international standard Vienna PeeDee Belemnite (VPDB) was used to calibrate the SIS. Absolute δ13CVPDB and Δδ13CVPDB values from randomly selected ampoules from both SIS indicate uniformity of steroid isotopic composition within measurement reproducibility, SD(δ13C) < 0.2‰. This procedure for creation of isotopic steroid mixtures results in consistent standards with isotope ratios traceable to the relevant international reference material.  相似文献   

16.
Muscle and adipose tissue were obtained from steers and dairy cows following subcutaneous administration of [14C] progesterone. Following extraction, purification and separation by column, thin layer and gas-liquid chromatography, various radioactive residues from these tissues were identified by their Chromatographic mobility, crystallization to constant specific activity and mass spectra. Progesterone constituted 54% of free radioactivity extracted from muscle and 69 and 73% of radioactivity in the free and conjugated portions of extracts, respectively, from fat. Metabolites identified were: 5α-pregnane-3,20-dione, 9%, 0%, 0%, 20β-hydroxy-4-pregnen-3-one, 8%, 11%, 3%; 3α-hydroxy-5β-pregnan-20-one, 13%, 2%, 2%; 3α-hydroxy-5α-pregnan-20-one, 3%, 3%, 6%; 20α-hydroxy-5α-pregnan-3-one, 0%, 2%, 3%; of radioactivity in muscle (free) and fat (free and conjugated fractions), respectively. Tentatively identified in fat extracts by chromatographic mobility were: 20α-hydroxy-4-pregnen-3-one, 1%, 1% and 3β-hydroxy-5β-pregnan-20-one, 0%, 2% of radioactivity in free and conjugated fractions, respectively. The average concentration of steroid in these animals due solely to treatment, calculated from the specific activity of the [14C] progesterone administered, was 3.4 and 18.1 ng/g in muscle and subcutaneous fat, respectively.  相似文献   

17.
A blinded cooperative assay of several androstane and pregnane steroid metabolites has been carried out in order to determine whether 5β-H derivatives are as active as testosterone in stimulating in vivo erythropoiesis. The steroids tested were: testosterone, 5-dihvdrotestosterone, 5β-dihydrotestosterone, 5β-pregnane-3,20-dione, 3-dihydroxy-5β-pregnàne-11,20-dione and 3β-hydroxy-5β-pregnan-20-one. The incorporation of radioactive iron into newly formed red cells in exhypoxic polycythemic mice was used to compare the effects of the steroids. Testosterone and 5-dihydrotestosterone both produced significant increases in 59Fe incorporation. 5β-dihydrotestosterone, 5β-pregnane-3,20-dione, 3-hydroxy-5β-pregnane-11,20-dione and 3β-hydroxy-5β-pregnan-20-one were all devoid of significant erythropoietic activity in polycythemic mice in almost all instances. Thus, under the conditions chosen, this study failed to demonstrate that 5β-steroids increase radioactive iron incorporation in red cells of exhypoxic polycythemic mice.  相似文献   

18.
Two pregnane steroids, pregnane (1) and 3β-hydroxypregnane (2), were oxidized by fermentation with the fungus Cephalosporium aphidicola. The fermentation of pregnane (1) yielded 3β-hydroxypregnane (2) and 3β, 6β,11α-trihydroxypregnane (3), while that of 3β-hydroxypregnane (2) afforded 6β,11α-dihydroxypregn-3,20-dione (4), 3β,6β,15α-trihydroxypregn-20-one (5) and 3β,5α,11α-trihydroxypregn-20-one (6). The metabolites are characterized by detailed physical and spectroscopic studies.  相似文献   

19.
Two D-homosteroids were isolated from the hydrolyzate of 5β-pregnane -3α,20α-diol disulfate (II) when it was refluxed in 3N hydrochloric acid. The structures of these steroids have been elucidated as 17α-methyl-D-homo-5β-androstane-3α, 17aβ-diol (VI) and 17α-methyl-17aγb-chloro-D-homo-5β-androstan-3α-ol (VIII) by instrumental analyses. The former was identical with a synthetic specimen derived from 5β-pregnane-3α,20β-diol di-sulfate (IV) by uranediol rearrangement. The main hydrolyzates obtained were 17α-ethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol (V) and 5β-pregnane-3α, 20α-diol (III).  相似文献   

20.
The epididymis of adult rats metabolize 3H-testosterone by experiments in vivo. Thirty minutes after the injection of 100 μCi 3H-testosterone, some 10 per cent of the total radioactivity of the epididymis was found in the water-soluble fraction, whereas 90 per cent was found in the ether soluble fraction (free steroids). The free steroids were examined further and the following androgenic metabolites identified: testosterone (17β-hydroxy-4-androsten-3-one) 8, 9%, androstendipne (4-androstene-3, 17-dione, 2,7%,5α-A-dione (5α-androstane-3, 17-dione) 6,5%, DHT (17β-hydroxy-5α-androstan-3-one) 47, 2%, 3β-diol (5α-androstane-3β, 17β-diol) 4, 4%, 3α-diol (5α-androstane-3α,17β-diol) 20, 8% and androsterone (3α-hydroxy-5α-androstan-3-one) 3,4%. The relative amount of each metabolite is given in per cent of total radioactivity in the ether soluble fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号