首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. When complete hydrolysis of glycerophosphlipids and sphingomyelin in the outer membrane leaflet is brought about by treatment of intact red blood cells with phospholipase A2 and sphingomyelinase C, the (Ca2+ + Mg2+)-ATPase activity is not affected. 2. Complete hydrolysis of sphingomyelin, by treatment of leaky ghosts with spingomyelinase C, does not lead to an inactivation of the (Ca2+ + Mg2+)-ATPase. 3. Treatment of ghosts with phospholipase A2 (from either procine pancreas of Naja naja venom), under conditions causing an essentially complete hydrolysis of the total glycerophospholipid fraction of the membrane, results in inactivation of the (Ca2+ + Mg2+)-ATPase by some 80--85%. The residual activity is lost when the produced lyso-compounds (and fatty acids) are removed by subsequent treatment of the ghosts with bovine serum albumin. 4. The degree of inactivation of the (Ca2+ + Mg2+)-ATPase, caused by treatment of ghosts with phospholipase C, is directly proportional to the percentage by which the glycerophospholipid fraction in the inner membrane layer is degraded. 5. After essentially complete inactivation of the (Ca2+ + Mg2+)-ATPase by treatment of ghosts with phospholipase C from Bacillus cereus, the enzyme is reactivated by the addition of any of the glycerophospholipids, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine or lysophosphatidylcholine, but not by addition of sphingomyeline, free fatty acids or the detergent Triton X-100. 6. It is concluded that only the glycerophospholipids in the human erythrocyte membrane are involved in the maintenance of the (Ca2+ + Mg2+)-ATPase activity, and in particular that fraction of these phospholipids located in the inner half of the membrane.  相似文献   

2.
Protoplasts prepared from Bacillus subtilis by lysozyme digestion lysed in the presence of pure pancreatic phospholipase A(2). The phospholipids cardiolipin, phosphatidylethanolamine, phosphatidylglycerol and lysylphosphatidylglycerol, which are present in the membrane, are degraded by phospholipase A(2) only after removal of the cell wall, giving free fatty acids and lyso derivatives. The four phospholipids are hydrolyzed equally well at a given enzyme concentration. Differences in the phospholipid composition of the protoplasts were obtained by variations in the growth medium, time of harvesting, and preincubation time with lysozyme. The extent of hydrolysis appeared to depend on the initial phospholipid composition. A relative increase in acidic phospholipids in the membrane facilitated the action of phospholipase A(2), whereas the rate of hydrolysis was diminished when protoplasts were tested which contained a relatively high amount of positively charged phospholipid. Pure phospholipase C from B. cereus preferentially hydrolyzed phosphatidyl-ethanolamine in the B. subtilis membrane. More than 80% of this phospholipid was converted into diglyceride, whereas only 30% of the cardiolipin was hydrolyzed. Such a loss of phospholipids, however, was not followed by lysis of the protoplasts. Liposomes were prepared from the lipid extracts of B. subtilis and incubated with both phospholipases. The hydrolysis pattern of the phospholipids in these model membrane systems was identical to the hydrolysis pattern of the phospholipids in the protoplast membrane. Phospholipase A(2) hydrolyzed all the phospholipids in the liposomes equally well, whereas phospholipase C preferentially degraded phosphatidylethanolamine.  相似文献   

3.
Exposure of guinea pig liver microsomes to phospholipase A2 resulted in the nearly complete loss of 17β-hydroxy-steroid oxidoreductase (17β-HSD) activity, the time course of which correlated with phospholipid hydrolysis and lysolecithin formation. Lysolecithin and unsaturated fatty acids added to microsomes also inactivated 17β-HSD indicating that they may contribute to the inactivation by phospholipase A2.If exposure to lysolecithin and fatty acids was minimized by including serum albumin in the reaction mixture, phospholipids were rapidly hydrolyzed; but in this case the extent of 17β-HSD inactivation was less and the rate of loss was significantly slower. The data suggest that phospholipid hydrolysis per se results in a destabilization of 17β-HSD resulting in the subsequent activity loss.The inactivation of 17β-HSD by lysolecithin and fatty acids has not been reported previously and is suggestive of a possible control mechanism in vivo.  相似文献   

4.
An acidic phospholipase A2 (EC 3.1.1.4) isolated from Naja naja siamensis venom blocks acetylcholine receptor function in excitable post synaptic membrane vesicles from Torpedo californica electroplax. Specifically, the phospholipase acts catalytically to prevent the large increase in sodium efflux induced by carbamylcholine. The efflux inhibition can be correlated with specific hydrolysis of phospholipids in the membrane. During the time course of inhibition, the binding affinity of the receptor for carbamylcholine increases 10-fold, a phenomenon associated with receptor desensitization. Prolonged treatment of the membranes with phospholipase A2 causes nonspecific lysis of the vesicles. Incorporation of unsaturated fatty acids or lysophosphatidylcholine into Torpedo membranes also blocks carbamylcholine-induced sodium efflux. The fatty acids have no effect on the binding affinity of the receptor, and lysophosphatidylcholine causes a small decrease in receptor affinity for carbamylcholine. Lysophosphatidylethanolamine and most saturated fatty acids have no direct effect on sodium efflux, but the lysophosphatides cause vesicle lysis. All of the inhibitory effects of the phospholipase and the fatty acids can be reversed and/or prevented by treatment of the vesicles with bovine serum albumin.  相似文献   

5.
The inactivation of 2-oxoglutarate dehydrogenase complex by freeze-thawing was examined along with alterations of membrane phospholipids, in order to elucidate the mechanism of freezing injury in mitochondria.The dehydrogenase complex activity in slowly frozen and thawed mitochondria decreased to 70% as compared to intact mitochondria and further decreased during incubation. This inactivation during incubation was temperature dependent, i.e., at temperatures up to 25°C there was a slight decrease, while at higher temperatures there was a marked decrease in the dehydrogenase complex activity. Simultaneously, there was a significant accumulation of free fatty acids, generated from mitochondrial phospholipids, which inhibited 2-oxoglutarate dehydrogenase and subsequently enzyme complex activity. Oxoglutarate dehydrogenase activity in mitochondria was markedly inhibited by exogenous phospholipase A, and this inhibition was partially prevented with bovine serum albumin. Furthermore, when intrinsic phospholipase A was either inhibited or stimulated, there was a respective decrease or increase in the enzyme complex inactivation.The activity of the purified enzyme complex decreased slightly after slow freezing, but remained constant even when incubated at temperatures up to 32°C. However, the activity of this enzyme complex was markedly reduced when incubated either in the presence of venom phospholipase A or with exogenous fatty acid.The relationship between inactivation of the 2-oxoglutarate dehydrogenase complex, phospholipase A activation and production of free fatty acids in frozen and thawed mitochondria is discussed.  相似文献   

6.
The inactivation of 2-oxoglutarate dehydrogenase complex by freeze-thawing was examined along with alterations of membrane phospholipids, in order to elucidate the mechanism of freezing injury in mitochondria. The dehydrogenase complex activity in slowly frozen and thawed mitochondria decreased to 70% as compared to intact mitochondria and further decreased during incubation. This inactivation during incubation was temperature dependent, i.e., at temperatures up to 25 degrees C there was a slight decrease, while at higher temperatures there was a marked decrease in the dehydrogenase complex activity. Simultaneously, there was a significant accumulation of free fatty acids, generated from mitochondrial phospholipids, which inhibited 2-oxoglutarate dehydrogenase and subsequently enzyme complex activity. Oxoglutarate dehydrogenase activity in mitochondria was markedly inhibited by exogenous phospholipase A, and this inhibition was partially prevented with bovine serum albumin. Furthermore, when intrinsic phospholipase A was either inhibited or stimulated, there was a respective decrease or increase in the enzyme complex inactivation. The activity of the purified enzyme complex decreased slightly after slow freezing, but remained constant even when incubated at temperatures up to 32 degrees C. However, the activity of this enzyme complex was markedly reduced when incubated either in the presence of venom phospholipase A or with exogenous fatty acid. The relationship between inactivation of the 2-oxoglutarate dehydrogenase complex, phospholipase A activation and production of free fatty acids in frozen and thawed mitochondria is discussed.  相似文献   

7.
The final modifications that the spermatozoa undergo correspond with the destabilization of their plasma membrane. This indispensable step facilitates the fusion of membranes and primes the signal transduction during fertilization. This destabilization is composed of a series of changes and modulation of the lipids in membranes such as cholestérol, phospholipids and glycolipids. Several differences exist in the lipid composition of the plasma, acrosome, nuclear and mitochondrial membranes of spermatozoa. The principal membrane phospholipids are phosphatidyl choline, phosphatidyl ethanolamine and sphingomyelin. Plasma membrane of sperm is also rich in polyunsaturated fatty acids (PUFA) linked to phospholipids. Such as C18∶2n?6, C20∶4n?6 and large amounts of docosahexaenoic acid (C22∶6n?6). The amount of membrane lipids in human sperm varies considerably between patients. This variation, could influence certain functional properties of the sperm cells such as their ability to undergo capacitation, the acrosome reaction and the fusion between sperm and oocyte membranes. The lipid composition of the human sperm cell can be altered during the process of freezing-thawing. A significant decrease in phospholipids (phosphatidyl choline, phosphatidyl ethanolamine), and PUFA in particular docosahexaenoic acid and arachidonic acid was observed. Human spermatozoa have a molar cholestérol/phopholipid ratio ≤1.0, and reduces during capacitation due to loss of cholestérol. In addition, the decrease in the levels of cholestérol and the methylation of phospholipids is involved in the modification of membrane fluidity and in the maturation of the sperm plasma membrane receptors. Therefore it seems that the methylation is important for the fusion between sperm and oocyte membranes. Intrinsic sperm phospholipase A2 also plays a role in the destabilization of the plasma membrane by producing of lysophospholipid. Therefore this enzyme and free fatty acids are believed to play a role in the acrosome reaction, an indispensable event facilitating the fusion between sperm and oocyte membranes.  相似文献   

8.
A change in the environment of rat brain membranes by dialysis from phosphate buffered saline (PBS) to 10 mM potassium phosphate (pH 7.2) led to a 35% loss in delta opioid receptor binding, while alteration of membrane structure on freezing at -20 degrees C for 55 days led to 85% loss of receptor binding. The dialysate, 200 mM KCI and NaCl restored receptor binding lost on dialysis. This K+ and Na+ restabilization of the receptor can be through cation-pi bonding, interactions that are suited to the lipid bilayer. In membranes stored at -20 degrees C, the loss of binding is attributed to increased membrane fluidity by phospholipase A2 action on membrane phospholipids, resulting in an increase of free fatty acids. K+ but not Na+ restabilization of these membrane receptors may be due to the ability of K+ to decrease membrane fluidity.  相似文献   

9.
Glucose stimulates both insulin secretion and hydrolysis of arachidonic acid (AA) esterified in membrane phospholipids of pancreatic islet beta-cells, and these processes are amplified by muscarinic agonists. Here we demonstrate that nonesterified AA regulates the biophysical activity of the pancreatic islet beta-cell-delayed rectifier channel, Kv2.1. Recordings of Kv2.1 currents from INS-1 insulinoma cells incubated with AA (5 mum) and subjected to graded degrees of depolarization exhibit a significantly shorter time-to-peak current interval than do control cells. AA causes a rapid decay and reduced peak conductance of delayed rectifier currents from INS-1 cells and from primary beta-cells isolated from mouse, rat, and human pancreatic islets. Stimulating mouse islets with AA results in a significant increase in the frequency of glucose-induced [Ca(2+)] oscillations, which is an expected effect of Kv2.1 channel blockade. Stimulation with concentrations of glucose and carbachol that accelerate hydrolysis of endogenous AA from islet phosphoplipids also results in accelerated Kv2.1 inactivation and a shorter time-to-peak current interval. Group VIA phospholipase A(2) (iPLA(2)beta) hydrolyzes beta-cell membrane phospholipids to release nonesterified fatty acids, including AA, and inhibiting iPLA(2)beta prevents the muscarinic agonist-induced accelerated Kv2.1 inactivation. Furthermore, glucose and carbachol do not significantly affect Kv2.1 inactivation in beta-cells from iPLA(2)beta(-/-) mice. Stably transfected INS-1 cells that overexpress iPLA(2)beta hydrolyze phospholipids more rapidly than control INS-1 cells and also exhibit an increase in the inactivation rate of the delayed rectifier currents. These results suggest that Kv2.1 currents could be dynamically modulated in the pancreatic islet beta-cell by phospholipase-catalyzed hydrolysis of membrane phospholipids to yield non-esterified fatty acids, such as AA, that facilitate Ca(2+) entry and insulin secretion.  相似文献   

10.
About 20 and 43% of the total membrane phospholipids are hydrolized in fresh rat erythrocytes by treatment with phospholipase C (Bacillus cereus), or both sphingomyelinase and phospholipase C, respectively, without causing cell lysis. Treatment of ATP-depleted cells with phospholipase C alone results in 50% hydrolysis and extensive lysis. Depletion of ATP causes a marked increase in the aggregation of intramembranous particles accompanied by a similar increase in the smooth area between the particle clusters as revealed by the freeze-etch technique. Such changes are not induced by extensive phospholipid hydrolysis in absence of cell lysis in fresh cells.Based on these and additional data, it is suggested that the membrane phospholipid organization can be divided into 3 types: phospholipids exposed to phospholipase C; phospholipids protected against phospholipase C by presence of sphingomyelin; phospholipids which can be exposed following alteration of the proteinlipid interactions. Such alterations which might be induced by a variety of means, including ATP depletion, might result in clustering of intramembranous particles and increase of the free lipid bilayer phase of the membrane.  相似文献   

11.
The thyroxin-induced mitochondrial swelling was accompanied by an accumulation in organellas of free fatty acids which level was restored after the mitochondria contraction in the ATP presence. EGTA induced mitochondrial contractions as well, but with no free fatty acids utilization. Apparently, the thyroxin-induced mitochondrial swelling is the result of the membrane phospholipase activation and of the increase in the membrane cationic permeability due to the hydrolysis of membrane phospholipids.  相似文献   

12.
The phospholipase activity of rat jejunal brush-border membranes was examined in the presence of several solubilizing agents, by measuring the hydrolysis of endogenous membrane phospholipids, as well as the hydrolysis of exogenous, radiolabelled substrates. Enzyme activity was highly stimulated by dispersion in 1% solutions of bile salts, or in a synthetic, bile-salt derivative, 3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate (CHAPS). Under these conditions the endogenous membrane phospholipids were largely degraded to free fatty acids and water-soluble phosphate. In the presence of 1% CHAPS, hydrolysis of exogenous phosphatidylcholine was shown to be due to an initial phospholipase A2-type attack followed by a subsequent lysophospholipase-type attack. These activities co-purified with the brush-border membrane. Maximal phospholipase A2 hydrolysis occurred at an alkaline pH of 8-11, with bile-salt detergents present at greater than their critical micellar concentrations. Hydrolysis was completely divalent-ion independent. Phospholipase A2 activity was not stimulated by 50% diethyl ether or ethanol, or in the presence of 1% solutions of Triton X-100, Zwittergent 3-12, sodium dodecyl sulphate, or n-octylglucoside. Stimulation of phospholipase activity by detergents was not related to their effectiveness at solubilizing the membrane proteins. When assayed individually phosphatidylcholine and lysophosphatidylcholine were each hydrolyzed (at the sn-2 and sn-1 positions, respectively) at a rate of approximately 125 nmol/mg protein per min. When assayed together, the two substrates appeared to compete for the same active site over a wide range of concentrations. It was concluded that the brush-border membrane contains an integral membrane protein with phospholipase A2 and lysophospholipase activities, which is specifically stimulated by bile salts and bile salt-like detergents.  相似文献   

13.
The role of phospholipids in the binding of 125I-choriogonadotropin to bovine corpus luteum plasma membranes has been investigated with the use of purified phospholipase A and phospholipase C to alter membrane phospholipids. The phospholipase C-digested plasma membrane preparation showed 85 to 90% inhibition of 125I-choriogonadotropin binding activity when 70% of the membrane phospholipid was hydrolyzed. Similarly treatment of plasma membranes with phospholipase A resulted in 45 to 55% hydrolysis of membrane phospholipid and almost 75% inhibition of receptor activity. Both these enzymes hydrolyzed membrane-associated phosphatidylcholine to a greater extent than phosphatidylethanolamine and phosphatidylserine. Phosphorylaminoalcohols of phospholiphase C end products were completely released into the medium, while phospholipase A by-products remained associated with plasma membranes. Addition of a phospholipids suspension or liposomes to plasma membranes pretreated with phospholipase A and C did not restore gonadotropin binding activity. Soluble phosphorylcholine, phosphorylethanolamine, and phosphorylserine and insoluble diglyceride products of phospholipase C action had no effect on receptor activity. In contrast, end products of the phospholipase A action, such as lysophosphatides and fatty acids, inhibited both on the membrane-associated and solubilized receptor activity. Lysophosphatidylcholine was the most effective end product inhibiting the binding of gonadotropin to the receptor, followed by lysophosphatidylethanolamine and lysophosphatidylserine. The inhibitory effects of phospholipase A or lysophosphatides were completely reversed upon removal of membrane-bound phospholipid end products by washing the membranes with defatted bovine serum albumin. However, phospholipase C inhibition could not be overcome by defatted albumin washings. Solubilization of plasma membranes with detergents which had been pretreated with phospholipase C partially restored the inhibited activity. It is concluded that the phospholipase-mediated inhibition of gonadotropin binding activity was due to hydrolysis and alterations of the phospholipid environment in the case of phospholipase C and by direct inhibition by end products in the case of phospholipase A.  相似文献   

14.
Highly purified mitochondria from rat liver contain a phospholipase A that catalyzes removal of 2-fatty acids, with a pH optimum above pH 8.0. Lysosomal preparations appeared to have two phospholipases A associated with them, one with a pH optimum at about pH 4.0, the second between pH 6.0 and 7.0. Mitochondrial phospholipase A hydrolyzed exogenous phospholipid as fast as or faster than endogenous phospholipid. The difference in specific radioactivity of (14)C-ethanolamine-labeled endogenous mitochondrial phospholipid before and after incubation indicates that a fraction of mitochondrial phosphatidyl ethanolamine is hydrolyzed more rapidly than the mitochondrial phospholipids as a whole. Acyl bond hydrolysis of exogenous and endogenous phospholipid by mitochondria was stimulated by free fatty acid, Ca(++), or in certain cases, monoacyl phospholipids or by treatments that disrupt the mitochondrial membrane. Of various fatty acids tested, lauric, myristic, oleic, and linoleic were most effective. ADP and ATP inhibited mitochondrial phospholipase, probably because they compete for Ca(++). Mg(++) also behaved as a competitive inhibitor; the effect was overcome by relatively little Ca(++).  相似文献   

15.
The lipid composition of purified Torpedo cholinergic synaptic vesicles was determined and their distribution between the inner and outer leaflets of the vesicular membrane was investigated. The vesicles contain cholesterol and phospholipids at a molar ratio of 0.63. The vesicular phospholipids are (mol% of total phospholipids): phosphatidylcholine (40.9); phosphatidylethanolamine (24.6); plasmenylethanolamine (11.5); sphingomyelin (12); phosphatidylserine (7.3); phosphatidylinositol (3.7). The asymmetry of the synaptic vesicle membranes was investigated by two independent approaches: (a) determining accessibility of the amino lipids to the chemical label trinitrobenzenesulphonic acid (TNBS); (b) determining accessibility of the vesicular glycerophospholipids to phospholipase C (Bacillus cereus). TNBS was found to render the vesicles leaky and thus cannot be used reliably to determine the asymmetry of Torpedo synaptic vesicle membranes. Incubation of the vesicles with phospholipase C (Bacillus cereus) results in biphasic hydrolysis of the vesicular glycerophospholipids. About 45% of the phospholipids are hydrolysed in less than 1 min, during which no vesicular acetylcholine is released. In the second phase, the hydrolysis of the phospholipids slows down markedly and is accompanied by loss of all the vesicular acetylcholine. These findings suggest that the lipids hydrolysed during the first phase are those comprising the outer leaflet. Analysis of the results thus obtained indicate that the vesicular membrane is asymmetric: all the phosphatidylinositol, 77% of the phosphatidylethanolamine, 47% of the plasmenylethanolamine and 58% of the phosphatidylcholine were found to reside in the outer leaflet. Since phosphatidylserine is a poor substrate for phospholipase C (B. cereus), its distribution between the two leaflets of the synaptic vesicle membrane is only suggestive.  相似文献   

16.
We have previously identified N-acylethanolamine phospholipids in infarcted dog heart and in normal fish brain by chemical and enzymatic degradation. We now report that hydrolysis with phospholipase D from Streptomyces chromofuscus removes N-acylethanolamine from N-acylethanolamine phospholipids and lyso N-acylethanolamine phospholipids, or N-acylserine from lyso N-acylserine phospholipids. At acidic pH, a phosphatase present in the phospholipase D preparation further hydrolyzes the resulting phosphatidic acid (PA) or lyso-PA to diacyl- or monoacylglycerol. Because N-acylserine phospholipids are a poor substrate for the phospholipase D, pretreatment with phospholipase A2 (Trimeresurus flavoviridis venom) is used to remove the 2-O-acyl group. Thus, both types of N-acylated phospholipids can be analyzed by consecutive phospholipase A2 and phospholipase D treatment. Reaction products, i.e., free fatty acids, monoacylglycerols and N-acylethanolamine or N-acylserine, are separable by thin-layer chromatography. Both N-acyl components can be further characterized by conversion to the t-butyldimethylsilyl derivatives. The method was used to identify and analyze the N-acylserine phospholipids of bovine brain.  相似文献   

17.
J L Denburg 《Life sciences》1976,18(7):751-758
The rates at which the phosphalipase A catalyzed inactivation of the axonal cholinergic binding macromolecule (ACBM), activation of acetylcholinesterase, and hydrolysis of fatty acid acyl esters were measured in an axon plasma membrane preparation from lobster nerves. The inactivation of ACBM was shown not to be caused by products of the reaction. The solubilized ACBM was also sensitive to phospholipase A inactivation. These results indicated a direct role for the phospholipid in the binding of cholinergic ligands to ACBM. It is suggested that ACBM may be a postsynaptic cholinergic receptor that is in a different lipid environment in the axon plasma membrane. A comparison with the effect of phospholipase A on axonal conduction in intact nerves suggests that the ACBM is directly involved in this process.  相似文献   

18.
DNA methylation and development.   总被引:21,自引:0,他引:21  
(1) Isolated rat liver mitochondria were subjected to catalytic hydrogenation using a water-soluble Pd complex and molecular H2. This treatment resulted in a reduction of double bonds on phospholipid acyl chains as judged by gas chromatography of fatty acid methyl esters and HPLC of dinitrobenzoyldiacylglycerols. (2) After hydrogenation, mitochondria lost their ability to hydrolyze endogenous phospholipids in alkaline, Ca2+ containing medium, while phospholipase A2 retained full activity against exogenous substrates, regardless of whether those substrates were hydrogenated or not. (3) Inhibition by hydrogenation of endogenous phospholipid hydrolysis correlated with the loss of polyunsaturated fatty acyls, rather than with changes of the bulk membrane fluidity as measured by ESR and fluorescence studies. (4) These data suggest that the unsaturation of mitochondrial membrane lipids might be important for regulation of phospholipid breakdown by endogenous phospholipases. In particular, polyunsaturated molecular species seem to be involved in making phospholipids accessible to phospholipase A-mediated hydrolysis.  相似文献   

19.
The events leading to decline of intracellular free magnesium concentration following traumatic brain injury are unknown. One possible mechanism that may lead to such declines is an alteration in the number and nature of magnesium binding sites within cell membranes following a traumatic event. Although both alterations in membrane structure and decrease in free magnesium concentration have been independently demonstrated to occur following brain trauma, no correlations between the two events have been shown. In the present study, rat brain phospholipids were extracted and reconstituted in MgATP containing aqueous solutions. Using 31P magnetic resonance spectroscopy to measure free magnesium concentration, enzymatic hydrolysis of the artificial membrane vesicles by phospholipase C was shown to reduce the free magnesium concentration. Since activation of phospholipase C has been demonstrated to occur following traumatic brain injury, we propose that this event may initiate decline in free magnesium levels in vivo.  相似文献   

20.
The mechanism by which some hydrophobic molecules such as steroids and free fatty acids (FFA) act as noncompetitive inhibitors of the nicotinic acetylcholine receptor (AChR) is still not known. In the present work, we employ F?rster resonance energy transfer (FRET) between the intrinsic fluorescence of membrane-bound Torpedo californica AChR and the fluorescent probe Laurdan using the decrease in FRET efficiency (E) caused by steroids and FFA to identify potential sites of these hydrophobic molecules. Structurally different steroids produced similar changes (DeltaE) in FRET, and competition studies between them demonstrate that they occupy the same site(s). They also share their binding site(s) with FFA. Furthermore, the FRET conditions define the location of the sites at the lipid-protein interface. Endogenous production of FFA by controlled phospholipase A2 enzymatic digestion of membrane phospholipids yielded DeltaE values similar to those obtained by addition of exogenous ligand. This finding, together with the preservation of the sites in membranes subjected to controlled proteolysis of the extracellular AChR moiety with membrane-impermeable proteinase K, further refines the topology of the sites at the AChR transmembrane domain. Agonist-induced desensitization resulted in the masking of the sites observed in the absence of agonist, thus demonstrating the conformational sensitivity of FFA and steroid sites in the AChR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号