首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both latent transforming growth factor-beta (TGF-beta)-binding proteins fibrillins are components of microfibril networks, and both interact with members of the TGF-beta family of growth factors. Interactions between latent TGF-beta-binding protein-1 and TGF-beta and between fibrillin-1 and bone morphogenetic protein-7 (BMP-7) are mediated by the prodomain of growth factor complexes. To extend this information, investigations were performed to test whether stable complexes are formed by additional selected TGF-beta family members. Using velocity sedimentation in sucrose gradients as an assay, complex formation was demonstrated for BMP-7 and growth and differentiation factor-8 (GDF-8), which are known to exist in prodomain/growth factor complexes. Comparison of these results with complex formation by BMP-2, BMP-4 (full-length and shortened propeptides), BMP-10, and GDF-5 allowed us to conclude that all, except for BMP-2 and the short BMP-4 propeptides, formed complexes with their growth factors. Using surface plasmon resonance, binding affinities between fibrillin and all propeptides were determined. Binding studies revealed that the N-terminal end of fibrillin-1 serves as a universal high affinity docking site for the propeptides of BMP-2, -4, -7, and -10 and GDF-5, but not GDF-8, and located the BMP/GDF binding site within the N-terminal domain in fibrillin-1. Rotary shadowing electron microscopy of molecules of BMP-7 complex bound to fibrillin-1 confirmed these findings and also showed that prodomain binding targets the growth factor to fibrillin. Immunolocalization of BMP-4 demonstrated fibrillar staining limited to certain tissues, indicating tissue-specific targeting of BMP-4. These data implicate the fibrillin microfibril network in the extracellular control of BMP signaling and demonstrate differences in how prodomains target their growth factors to the extracellular space.  相似文献   

2.
Endoglin, a type I membrane glycoprotein expressed as a disulfide-linked homodimer on human vascular endothelial cells, is a component of the transforming growth factor (TGF)-β receptor complex and is implicated in a dominant vascular dysplasia known as hereditary hemorrhagic telangiectasia as well as in preeclampsia. It interacts with the type I TGF-β signaling receptor activin receptor-like kinase (ALK)1 and modulates cellular responses to Bone Morphogenetic Protein (BMP)-9 and BMP-10. Structurally, besides carrying a zona pellucida (ZP) domain, endoglin contains at its N-terminal extracellular region a domain of unknown function and without homology to any other known protein, therefore called the orphan domain (OD). In this study, we have determined the recognition and binding ability of full length ALK1, endoglin and constructs encompassing the OD to BMP-9 using combined methods, consisting of surface plasmon resonance and cellular assays. ALK1 and endoglin ectodomains bind, independently of their glycosylation state and without cooperativity, to different sites of BMP-9. The OD comprising residues 22 to 337 was identified among the present constructs as the minimal active endoglin domain needed for partner recognition. These studies also pinpointed to Cys350 as being responsible for the dimerization of endoglin. In contrast to the complete endoglin ectodomain, the OD is a monomer and its small angle X-ray scattering characterization revealed a compact conformation in solution into which a de novo model was fitted.  相似文献   

3.
In vitro binding of Hoechst 33258 to the promoter region of human c-myc, d(GG GGAGGG TGG GGA GGG TGG GGA AGG TGG GG) which forms G-quadruplex, both in vitro and in vivo in the presence of metal ions, was investigated by equilibrium absorption, fluorescence, and kinetic surface plasmon resonance methods. Hypochromic effect in UV absorption spectra and blue shift in fluorescence emission maxima of Hoechst in the presence of quadruplex revealed that Hoechst binds to the quadruplex. Analysis of UV and fluorescence titration data revealed that Hoechst binds to quadruplex with binding affinity of the order of 10(6). Anisotropy measurements and higher lifetime obtained from time-resolved decay experiments revealed that quadruplex-bound Hoechst is rotationally restricted in a less polar environment than the bulk buffer medium. From surface plasmon resonance studies, we obtained kinetic association (k(a)) and dissociation (k(d)) of 1.23+/-0.04 x 10(5)M(-1)s(-1) and 0.686+/-0.009 s(-1), respectively. As Hoechst is known to bind A-T-rich region of duplex DNA, here we propose the likelihood of Hoechst interacting with the AAGGT loop of the quadruplex.  相似文献   

4.
Bone morphogenetic protein-4 (BMP-4) is a key morphogen for embryonic lung development that is expressed at high levels in the peripheral epithelium, but the mechanisms that modulate BMP-4 function in early mouse lung branching morphogenesis are unclear. Here, we studied the BMP-4 antagonist Gremlin, which is a member of the DAN family of BMP antagonists that can bind and block BMP-2/4 activity. The expression level of gremlin in embryonic mouse lungs is highest in the early embryonic pseudoglandular stage [embryonic days (E) 11.5-14.5] and is reduced during fetal lung maturation (E18.5 to postnatal day 1). In situ hybridization indicates that gremlin is diffusely expressed in peripheral lung mesenchyme and epithelium, but relatively high epithelial expression occurs in branching buds at E11.5 and in large airways after E16.5. In E11.5 lung organ culture, we found that exogenous BMP-4 dramatically enhanced peripheral lung epithelial branching morphogenesis, whereas reduction of endogenous gremlin expression with antisense oligonucleotides achieved the same gain-of-function phenotype as exogenous BMP-4, including increased epithelial cell proliferation and surfactant protein C expression. On the other hand, adenoviral overexpression of gremlin blocked the stimulatory effects of exogenous BMP-4. Therefore, our data support the hypothesis that Gremlin is a physiologically negative regulator of BMP-4 in lung branching morphogenesis.  相似文献   

5.
Three cysteine analogues of bone morphogenetic protein (BMP)-2, BMP2A2C, BMP2N56C, and BMP2E96C, were generated in order to enable the attachment of SH-reactive poly(ethylene glycol) (PEG) at specific sites. Three different approaches (Ap) were used for SH-specific PEGylation: (Ap1) reaction of glutathione activated proteins with thiol PEG; (Ap2) reaction of DTT reduced proteins with orthopyridyl disulfide PEG; (Ap3) reaction of DTT reduced proteins with maleimide PEG. Non-, mono-, and di-PEGylated BMP-2 analogues could be separated by RP-HPLC. Trypsin digestion of PEGylated proteins and Trypsin and GluC double-digestion of N-ethylmaleimide-labeled proteins confirmed that the modifications were site-specific. Surface plasmon resonance analysis of type I and type II receptor binding of the PEGylated BMP-2 analogues revealed that all three PEGylation approaches were equivalent. PEGylation at positions 2 and 96 caused a similar decrease in receptor affinity. PEGylation at position 56 resulted in a larger decrease in affinity for both types of receptors. Mono-PEGylated BMP-2 analogues exhibited intermediate affinities in comparison with unmodified and di-PEGylated proteins. However, the biological activity of the PEGylated BMP-2 analogues as measured in alkaline phosphatase assay was higher than BMP-2 wild-type for the PEGylated BMP2A2C, slightly reduced for the BMP2N56C, and strongly reduced for the BMP2E96C. These results taken together indicate that specific attachment of PEG at engineered sites of BMP-2 is possible and that the attachment site is critical for biological activity. Furthermore, the biological activity of PEGylated BMP-2 analogues in cell culture seems to be determined not only by receptor affinity, but also by other factors such as protein solubility and stability. It is also discussed that the attached PEG interferes with the binding of BMP-2 to modulator proteins, co-receptors, or heparinic sites of proteoglycans in the extracellular matrix.  相似文献   

6.
We cloned, expressed, and purified a chimeric fusion between a soluble green fluorescent protein (smGFP) and the calmodulin binding protein calspermin. We have shown that the fusion protein, labeled smGN, has a K(i) in the calmodulin-dependent cyclic nucleotide phosphodiesterase activity assay of 1.97 nM, i.e., 3800 times smaller than that of the commonly used calmodulin inhibitor W7. Association and dissociation rate constants (k(a) and k(d)) and the dissociation equilibrium constant (K(D)) of smGN for calmodulin were determined using surface plasmon resonance (SPR). The k(a)=1.24 x 10(6)M(-1)s(-1), the k(d)=5.49 x 10(-3)s(-1), and the K(D)=4.42 x 10(-9)M. We also found that the GFP moiety was important for successfully binding calspermin to the surface of the CM5 flow cell at a sufficiently high concentration for SPR, and that this procedure may be used for SPR analysis of other acidic polypeptides, whose pI< or =4. To determine whether smGN might also bind to other calmodulin-like proteins in a heterologous system, we purified proteins from a plant total cell extract or a plant total protein extract by affinity chromatography against smGN. The purified proteins were identified as calmodulins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry, indicating a high level of specificity. We conclude that the high affinity and specific binding between smGN and calmodulin make it an easily localized recombinant alternative to chemical calmodulin inhibitors.  相似文献   

7.
The bone morphogenetic proteins (BMPs) are a group of transforming growth factor beta (TGF-beta)-related factors whose only receptor identified to date is the product of the daf-4 gene from Caenorhabditis elegans. Mouse embryonic NIH 3T3 fibroblasts display high-affinity 125I-BMP-4 binding sites. Binding assays are not possible with the isoform 125I-BMP-2 unless the positively charged N-terminal sequence is removed to create a modified BMP-2, 125I-DR-BMP-2. Cross-competition experiments reveal that BMP-2 and BMP-4 interact with the same binding sites. Affinity cross-linking assays show that both BMPs interact with cell surface proteins corresponding in size to the type I (57- to 62-kDa) and type II (75- to 82-kDa) receptor components for TGF-beta and activin. Using a PCR approach, we have cloned a cDNA from NIH 3T3 cells which encodes a novel member of the transmembrane serine/threonine kinase family most closely resembling the cloned type I receptors for TGF-beta and activin. Transient expression of this receptor in COS-7 cells leads to an increase in specific 125I-BMP-4 binding and the appearance of a major affinity-labeled product of approximately 64 kDa that can be labeled by either tracer. This receptor has been named BRK-1 in recognition of its ability to bind BMP-2 and BMP-4 and its receptor kinase structure. Although BRK-1 does not require cotransfection of a type II receptor in order to bind ligand in COS cells, complex formation between BRK-1 and the BMP type II receptor DAF-4 can be demonstrated when the two receptors are coexpressed, affinity labeled, and immunoprecipitated with antibodies to either receptor subunit. We conclude that BRK-1 is a putative BMP type I receptor capable of interacting with a known type II receptor for BMPs.  相似文献   

8.
Characterization of follistatin isoforms in early Xenopus embryogenesis   总被引:1,自引:0,他引:1  
Follistatin is expressed in Spemann's organizer in the Xenopus gastrula and mimics the activity of the organizer, inducing a neural fate directly in the ectoderm. We have previously shown that follistatin inhibits BMP activity through a direct interaction. In this study, we have characterized the localization and function of two follistatin isoforms to examine the functional differences between them. One notable difference, previously described, is that the shorter form (xFSS or xFS319) but not the C-terminally extended long form (xFSL) associates with cell-surface matrices. Here, we show that the spatial-temporal expression pattern of xFSL and xFSS is indistinguishable. Interestingly, however, xFSS was found to have a more potent inhibitory activity against BMP-4 than xFSL. Furthermore, using a surface plasmon resonance biosensor, xFSS was shown to have a higher binding capacity for BMP subtypes. The diffusion rates of xFSS and xFSL ectopically expressed in Xenopus embryos were similar. Taken together, our results suggest that the difference in BMP-inhibiting activity of the two follistatin isoforms is mainly attributable to a difference in their BMP binding properties rather than to their diffusion rates.  相似文献   

9.
Vitellogenesis is the process of yolk formation in rapidly growing oocytes of oviparous species. The transport of yolk precursor proteins from the blood plasma into the oocyte is achieved by receptor-mediated endocytosis. Although the Xenopus oocyte is one of the prime experimental systems for expression of foreign genes and their products, the receptor for the main vitellogenic protein, vitellogenin, from this extensively utilized cell has not been identified. Here we have applied ligand and immunoblotting to visualize the Xenopus laevis oocyte receptor for vitellogenin as a protein with an apparent Mr of 115,000 in sodium dodecyl sulfate-polyacrylamide gels under nonreducing conditions. The receptor from the amphibian oocyte also recognizes chicken vitellogenin, and vice versa; furthermore, the two receptor proteins are immunologically related as revealed by Western blotting with anti-chicken vitellogenin receptor antibodies. The receptors from both species bind the lipovitellin moiety of vitellogenin, as revealed by ligand blotting with radiolabeled lipovitellin polypeptides as well as by a novel reverse ligand blotting procedure utilizing nitrocellulose-immobilized ligand. Since vitellogenins of chicken and Xenopus have been shown to be structurally similar and evolutionarily related (Nardelli, D., van het Schip, F. D., Gerber-Huber, S., Haefliger, J.-A., Gruber, M., AB, G., and Wahli, W. (1987) J. Biol. Chem. 262, 15377-15383), it appears that conservation of key structural elements required for efficient vitellogenesis extends from the ligands to their receptors on the oocyte plasma membrane.  相似文献   

10.
We uncovered a new regulation of thyrocyte function by bone morphogenetic protein (BMP) under the influence of thyrotropin (TSH) using primary culture of porcine thyrocytes. The BMP type I receptors, ALK-2 (ActRIA), -3 (BMPRIA), and -6 (BMPRIB), were expressed in porcine thyrocytes, while ALK-6 was not detected in human thyroid. Treatment with BMP-2, -4, -6, -7, and TGF-beta1 exhibited a dose-dependent suppression of DNA synthesis by porcine thyrocytes. BMP-2, -4, -6, -7, and TGF-beta1 suppressed TSH receptor mRNA expression on thyrocytes, which was consistent with their suppressive effect on TSH-induced cAMP synthesis and TSH-induced insulin-like growth factor-1 expression. Activin exhibited minimal suppression of thyrocyte DNA synthesis and did not exhibit suppressive effects on TSH receptor mRNA expression. Phosphorylated Smad1/5/8 was detected in the lysates of porcine thyrocytes treated with BMP-2, -4, -6, and -7. However, in the presence of TSH, BMP-6 and -7 failed to activate Smad1/5/8 phosphorylation and 3TP-reporter activity, whereas BMP-2 and -4 maintained clear activation of the BMP signaling regardless of the presence of TSH. This diverged regulation of thyroid BMP system by TSH is most likely due to the reduction of ALK-6 expression caused by TSH. Thus, the thyroid BMP system is functionally linked to TSH actions through modulating TSH receptor expression and TSH, in turn, selectively inhibits BMP signaling. Given that BMP system is present in human thyroid and the expression pattern of ALK-2 and BMPRII is different between follicular adenomas and normal thyroid tissues, the endogenous BMP system may be involved in regulating thyrocyte growth and TSH sensitivity of human thyroid adenomas.  相似文献   

11.
There is increasing evidence that TGF-beta family member cytokine bone morphogenetic protein (BMP)-4 plays different pathophysiological roles in the pulmonary and systemic circulation. Upregulation of BMP-4 has been linked to atherosclerosis and hypertension in the systemic circulation, whereas disruption of BMP-4 signaling is associated with the development of pulmonary hypertension. To test the hypothesis that BMP-4 elicits differential effects in the pulmonary and systemic circulation, we compared the prooxidant and proinflammatory effects of BMP-4 in cultured human coronary arterial endothelial cells (CAECs) and pulmonary arterial endothelial cells (PAECs). We found that BMP-4 (from 0.3 to 10 ng/ml) in CAECs increased O(2)(*-) and H(2)O(2) generation, induced NF-kappaB activation, upregulated ICAM-1, and induced monocyte adhesiveness to ECs. In contrast, BMP-4 failed to induce oxidative stress or endothelial activation in PAECs. Also, BMP-4 treatment impaired acetylcholine-induced relaxation and increased O(2)(*-) production in cultured rat carotid arteries, whereas cultured rat pulmonary arteries were protected from these adverse effects of BMP-4. Thus, we propose that BMP-4 exerts prooxidant, prohypertensive, and proinflammatory effects only in the systemic circulation, whereas pulmonary arteries are protected from these adverse effects of BMP-4. The vascular bed-specific endothelial effects of BMP-4 are likely to contribute to its differential pathophysiological role in the systemic and pulmonary circulation.  相似文献   

12.
The amino acid sequence of lamprey vitellogenin has been predicted from the nucleotide sequence of cloned cDNA. The sites of proteolytic cleavage that produce the lipovitellin complex from the vitellogenin have been located by comparing the N-terminal sequences of two lamprey lipovitellin polypeptides with the predicted sequence. These results also confirm that the vitellogenin sequence derived here corresponds to the lipovitellin complex for which the crystal structure has been solved previously. Predictions of secondary structure indicate that the region most likely to correspond to the large alpha-helical domain of the crystallographic model consists of vitellogenin residues 300 to 600. Similar to the lipovitellins of Xenopus laevis, lamprey lipovitellin appears to lack approximately 200 C-terminal residues that are present in vitellogenin. However, the lamprey lipovitellin differs from those of Xenopus and chicken in two respects. First, most of the serine-rich domain that is present as the phosvitin polypeptide in the lipovitellins of the higher vertebrates appears to be lost in the maturation of lamprey vitellogenin to lipovitellin. Second, the domains that constitute the large lipovitellin-1 polypeptide in Xenopus and chicken are present in two polypeptides in lamprey, owing to an additional proteolytic processing event.  相似文献   

13.
We assessed the distribution and relative staining intensity of bone morphogenetic protein (BMP)-1-7 by immunohistochemistry in tibial growth plates, epiphyses, metaphyses, and articular cartilage in one 21-week and one 22-week human fetus and in five 10-week-old Sprague-Dawley rats. In the rats, articular cartilage was also examined. BMP proteins were mostly cytoplasmic, with negligible matrix staining. Highest BMP levels were seen in (a) hypertrophic and calcifying zone chondrocytes of growth plate (BMP-1-7), (b) osteoblasts and/or osteoprogenitor fibroblasts and vascular cells of the metaphyseal cortex and medulla (BMP-1-6), (c) osteoclasts of the metaphysis and epiphysis (BMP-1,-4,-5, and -6), and (d) mid to deep zone articular chondrocytes of weanling rats (BMP-1-7). BMP staining in osteoclasts, an unexpected finding, was consistently strong with BMP-4, -5, and -6 but was variable and dependent on osteoclast location with BMP-2,-3, and -7. BMP-1-7 were moderately to intensely stained in vascular canals of human fetal epiphyseal cartilage by endothelial cells and pericytes. BMP-1,-3,-5,-6, and -7 were localized in hypertrophic chondrocytes adjacent to cartilage canals. We conclude that BMP expression is associated with maturing chondrocytes of growth plate and articular cartilage, and may play a role in chondrocyte differentiation and/or apoptosis. BMP appears to be expressed by osteoclasts and might be involved in the intercellular "cross-talk" between osteoclasts and neighboring osteoprogenitor cells at sites of bone remodeling.  相似文献   

14.
The binding kinetics of human insulin-like growth factor binding protein (IGFBP) 1-6 for recombinant human insulin-like growth factor (IGF) I and II were measured and compared in the present study using surface plasmon resonance biosensor technique. Different concentrations of IGFBPs (5-100 nM) were allowed to interact with the immobilized IGF-I or IGF-II on sensor chip surface. Both des(1-3)IGF-I and insulin are known to bind weakly to the IGFBPs and therefore are used as negative controls for the binding experiments. The resultant sensorgrams were analyzed by using simple 1:1 binding model to derive both the association rate (k(a)) and dissociation rate (k(d)) constants for IGFBP-IGF interactions. The k(a) values of IGFBPs are in the range of 1x10(4) to 9x10(5) M(-1) s(-1) for IGF-I and 7x10(3) to 1.7x10(6) M(-1) s(-1) for IGF-II, respectively. The orders of k(a) for both IGF-I and IGF-II are IGFBP-3>IGFBP-5>IGFBP-6>IGFBP-4>IGFBP-2>++ +IGFBP-1. The k(d) values of IGFBPs are in the range of 1.5x10(-5) to 2x10(-4) s(-1) for IGF-I and 3.6x10(-5) to 3.7x10(-4) s(-1) for IGF-II, respectively. The order of k(d) for IGF-I is IGFBP-6>IGFBP-5>IGFBP-4>IGFBP-3>IGFBP-2>++ +IGFBP-1 and that for IGF-II is IGFBP-5>IGFBP-6>IGFBP-2>IGFBP-4>IGFBP-3>++ +IGFBP-1, respectively. The equilibrium affinity constants (K(A)) were calculated based on the ratio of k(a)/k(d) and were more precise than the published literature values based on competitive radioligand binding assays. The systematic study enables a direct comparison on the IGF-binding properties among the various IGFBPs, and the kinetic data provide additional information to delineate the physiological role of different IGFBPs in vivo.  相似文献   

15.
Kinetics of 3-hydroxyphthaloyl-beta-lactoglobulin-CD4 interaction were evaluated using a biosensor instrument based on surface plasmon resonance. A very fast association (k(a)=2.4+/-0.3x10(6)M(-1)s(-1)) and slow dissociation (K(d)=2.3+/-0.14x10(-4)s(-1)) rate constants were observed indicating the high affinity of the complex. This result together with earlier data, suggest that "structure-specific" requirements must be met to endow acid anhydride modified lactoglobulin with the capacity for high affinity binding to CD4.  相似文献   

16.
Drosophila Crossveinless-2 (dCV-2) is required for local activation of Mad phosphorylation in the fruit fly wing and has been postulated to be a positive regulator of BMP-mediated signaling. In contrast, the presence of 5 Chordin-like cysteine-rich domains in the CV-2 protein suggests that CV-2 belongs to a family of well-established inhibitors of BMP function that includes Chordin and Sog [Development 127 (2000) 3947]. We have identified a human homolog of Drosophila CV-2 (hCV-2). Here we show that purified recombinant hCV-2 protein inhibits BMP-2 and BMP-4 dependent osteogenic differentiation of W-20-17 cells, as well as BMP dependent chondrogenic differentiation of ATDC5 cells. Interestingly, hCV-2 messenger RNA is expressed at high levels in human primary chondrocytes, whereas expression in primary human osteoblasts is low. These results suggest that hCV-2 may regulate BMP responsiveness of osteoblasts and chondrocytes in vivo. Taken together we have shown that contrary to the function predicted from the fruit fly, Crossveinless-2 is a novel inhibitor of BMP function.  相似文献   

17.
Heparin (HEP) has been covalently immobilized onto 4-aminothiophenol (ATP) self-assembled monolayer (SAM) deposited onto gold (Au)-coated glass plate for low density lipoprotein (LDL) detection. The HEP/ATP/Au and LDL/HEP/ATP/Au electrodes have been characterized using cyclic voltammetry (CV) and scanning electron microscopy (SEM). Surface plasmon resonance (SPR) measurements reveal that HEP/ATP/Au electrode is sensitive to detection of the LDL in the range 0.03 microM (10 mg/dl)-0.39 microM (130 mg/dl). The values of association and dissociation rate constants in the association phase calculated by kinetic analysis have been found to be k(a) = 9.67 x 10(1) M(-1) s(-1) and k(d) = 2.64 x 10(-4) s(-1).  相似文献   

18.
1. The process by which the egg-yolk protein precursor vitellogenin is biosynthesized, assembled and secreted by Xenopus laevis (South African clawed toad) liver was studied. It was previously shown in other laboratories that vitellogenin contains the two egg-yolk proteins lipovitellin (mol.wt. 140 000) and phosvitin (mol.wt. 35 000). 2. Evidence is presented which shows that Xenopus liver microsomal fractions synthesize precursors of vitellogenin. These precursors were solubilized from the membranes with detergent and analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. This analysis indicated that there is only one precursor polypeptide, and this has mol.wt. approx. 200 000 +/- 20 000. This demonstrates that the egg-yolk proteins are translated as part of this larger polypeptide. 3. Experiments also demonstrate the existence of a microsomal proteinase which is able to cleave the precursor into smaller fragments. The nature of these fragments provided some indirect evidence that phosvitin and lipovitellin light chains are situated together within the precursor molecule. 4. These precursor data fit in well with structural studies on serum vitellogenin, since it has been shown that the latter protein consists of two identical subunits each with a mobility on sodium dodecyl sulphate/polyacrylamide gels identical with that shown by the microsomal precursor. This indicates that both the intracellular precursor and subunit of vitellogenin have similar (but not necessarily identical) molecular weights. 5. It was also shown that trypsin or chymotrypsin can cleave the serum vitellogenin into leucine- and serine-rich fragments which resemble lipovitellin and phosvitin respectively. Attention is, however, drawn to the fact that the serine-rich fragment is not identical with phosvitin, since it contains eight times more leucine than that expected for the authentic phosvitin molecule [Penning (1976) Ph.D. Thesis, University of Southampton].  相似文献   

19.
Lactose molecules were installed on the surface of poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) block copolymer micelles in the scope of seeking specific recognition by cell surface receptors at hepatic sites. This, in turn, is expected to result in the formation of a complex displaying prolonged retention times and thus enhanced cellular internalization by receptor-mediated endocytosis. The so-obtained particles based on a block copolymer of molecular weight 9400 g/mol (4900/4500 g/mol for the PEG and PLA blocks, respectively) were found to have an average hydrodynamic diameter of 31.8 nm, as measured by dynamic light scattering. Further, the particle size distribution (micro(2)/Gamma(2)) was found to be lower than 0.08. Lactose-PEG-PLA micelles (Lac-micelles) were then injected over a gold surface containing Ricinus communis agglutinin lectins simulating the aforementioned glycoreceptors, and their interaction was studied by surface plasmon resonance. Then, a kinetic evaluation was carried out, by fitting the observed data mathematically. It appears that Lac-micelles bind in a multivalent manner to the lectin protein bed, which logically results in low dissociation constants. Micelles bearing a ligand density of 80% (Lac-micelles 80%: 80 lactose molecules per 100 copolymer chains) exhibit fast association phases (k(a1) = 3.2 x 10(4) M(-)(1) s(-)(1)), but also extremely slow dissociation phases (k(d1) = 1.3 x 10(-)(4) s(-)(1)). Recorded sensorgrams were fitted with a trivalent model, conveying a calculated equilibrium dissociation constant (K(D1) = k(d1)/k(a1)) of about 4 nM. The importance of cooperative binding was also assessed, by preparing Lac-micelles bearing different ligand densities, and by discussing the influence of the latter on kinetic constants. Interestingly enough, whereas Lac-micelles 80% bind in a trivalent manner to the protein bed, Lac-micelles 20% are still capable of forming bivalent complexes with the same protein bed (K(D1) = 1360 nM). Therefore, despite enhanced kinetic values brought about by a supplementary bond, lower ligand densities appear to be more effective on a molecular basis.  相似文献   

20.
The bone morphogenetic protein (BMP) family, the largest subfamily of the structurally conserved transforming growth factor-beta (TGF-beta) superfamily of growth factors, are multifunctional regulators of development, proliferation, and differentiation. The TGF-beta type III receptor (TbetaRIII or betaglycan) is an abundant cell surface proteoglycan that has been well characterized as a TGF-beta and inhibin receptor. Here we demonstrate that TbetaRIII functions as a BMP cell surface receptor. TbetaRIII directly and specifically binds to multiple members of the BMP subfamily, including BMP-2, BMP-4, BMP-7, and GDF-5, with similar kinetics and ligand binding domains as previously identified for TGF-beta. TbetaRIII also enhances ligand binding to the BMP type I receptors, whereas short hairpin RNA-mediated silencing of endogenous TbetaRIII attenuates BMP-mediated Smad1 phosphorylation. Using a biologically relevant model for TbetaRIII function, we demonstrate that BMP-2 specifically stimulates TbetaRIII-mediated epithelial to mesenchymal cell transformation. The ability of TbetaRIII to serve as a cell surface receptor and mediate BMP, inhibin, and TGF-beta signaling suggests a broader role for TbetaRIII in orchestrating TGF-beta superfamily signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号