首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability of threeSaccharomyces cerevisiae strains, with different colour adsorption aptitude, to induce and maintain colour differences in wines obtained from the Calabrian Gaglioppo and Magliocco black grape varieties was studied during one year of aging. The evolution of wine tannin content was also considered. Total polyphenols, colour parameters and total tannin values exhibited, both for Gaglioppo and Magliocco wines, significant (P < 0.05) or highly significant (P < 0.01) differences among strains. It is interesting to note that yeasts appear to exhibit a different adsorption aptitude for anthocyanins and tannins. The strain that gave wine with high values for the colour parameters was not the same as the one that produced wine with high values of tannins. The obtained results suggest that the choice of yeast strain in winemaking affects, in a significant way, the phenolic composition of wines with direct consequences on their colour and tannin content. Moreover, the interaction between grape cultivar and yeast is close and important, because grape variety, due to its phenolic composition, modulates yeast strain adsorption activity.  相似文献   

2.
Summary In Mexico there are different alcoholic beverages produced from agave juices from different agave plants, which are cooked, fermented and distilled. For tequila production only Agave tequilana is allowed. In this study we compared yeast strains of different species from different origin (agave and grape juice) for parameters of technological interest, such as SO2 and copper resistance, ethanol tolerance and enzymatic activities. All agave strains were found to be more resistant to SO2 and agave non-Saccharomyces yeasts were more tolerant to ethanol, whereas grape strains exhibited positive results for β-glucosidase and β-xylosidase activities. As regards fermentations of Agave tequilana juice with ethanol added at different concentrations, only agave Saccharomyces strains were more tolerant to ethanol than grape strains.  相似文献   

3.
The distribution of mutagenic activity in red, rose and white wines   总被引:1,自引:0,他引:1  
Using a modified Salmonella typhimurium TA98 Ames-test system, more than 150 red, white and rose wines were analyzed for direct-acting and microsomal enzyme-enhanced mutagenic activity. The following conclusions were reached from analysis of this wine mutagenicity data base. White and rose wines, as well as grape juices, exhibited little or no detectable direct-acting or microsomal enzyme-enhanced mutagenic activity. However, red wine samples contained highly variable amounts of mutagens, ranging from undetectable to levels 30-fold above the sensitivity limit of the assay system. The variations in red wine mutagenicity were unrelated to grape variety, vintage, aging methods or production region. Hence, individual winery production practices must represent the most significant contribution to the variations observed.  相似文献   

4.
AIMS: The main objective of this study was to develop polysaccharide-degrading wine strains of Saccharomyces cerevisiae, which are able to improve aspects of wine processing and clarification, as well as colour extraction and stabilization during winemaking. METHODS AND RESULTS: Two yeast expression/secretion gene cassettes were constructed, namely (i) a pectinase gene cassette (pPPK) consisting of the endo-polygalacturonase gene (pelE) from Erwinia chrysanthemi and the pectate lyase gene (peh1) from Erwinia carotovora and (ii) a glucanase/xylanase gene cassette (pEXS) containing the endo-beta-1,4-glucanase gene (end1) from Butyrivibrio fibrisolvens and the endo-beta-1,4-xylanase gene (xynC) from Aspergillus niger. The commercial wine yeast strain, VIN13, was transformed separately with these two gene cassettes and checked for the production of pectinase, glucanase and xylanase activities. Pinot Noir, Cinsaut and Muscat d'Alexandria grape juices were fermented using the VIN13[pPPK] pectinase- and the VIN13[pEXS] glucanase/xylanase-producing transformants. Chemical analyses of the resultant wines indicated that (i) the pectinase-producing strain caused a decrease in the concentration of phenolic compounds in Pinot Noir whereas the glucanase/xylanase-producing strain caused an increase in phenolic compounds presumably because of the degradation of the grape skins; (ii) the glucanase/xylanase-producing strain caused a decrease in wine turbidity, especially in Pinot Noir wine, as well as a clear increase in colour intensity and (iii) in the Muscat d'Alexandria and Cinsaut wines, the differences between the control wines (fermented with the untransformed VIN3 strain) and the wines produced by the two transformed strains were less prominent showing that the effect of these polysaccharide-degrading enzymes is cultivar-dependent. CONCLUSIONS: The recombinant wine yeasts producing pectinase, glucanase and xylanase activities during the fermentation of Pinot Noir, Cinsaut and Muscat d'Alexandria grape juice altered the chemical composition of the resultant wines in a way that such yeasts could potentially be used to improve the clarity, colour intensity and stability and aroma of wine. SIGNIFICANCE AND IMPACT OF THE STUDY: Aspects of commercial-scale wine processing and clarification, colour extraction and stabilization, and aroma enhancement could potentially be improved by the use of polysaccharide-degrading wine yeasts without the addition of expensive commercial enzyme preparations. This offers the potential to further improve the price:quality ratio of wine according to consumer expectations.  相似文献   

5.
The principal agent in winemaking is the yeast Saccharomyces cerevisiae, which is characterized by a significant strain biodiversity. Here we report the characterization of 80 wild S. cerevisiae strains, isolated from grapes of different varieties in southern Italy, for genetic and technological variability. By PCR amplification with M13 primer a significant polymorphism was recorded and 12 different biotypes were identified among the strains. The specific strain-pattern could be used to follow the dynamics of different biotypes during the fermentation process. The analysis of experimental wines obtained by inoculated fermentations with the 80 strains showed significant differences among the wines. The level of each compound was a function of the strain performing the fermentative process. The main variables for the strain differentiation were the production of acetaldehyde and acetic acid, which ranged from 53 to 282 mg/l and from 0.20 to 1.88 g/l, respectively. Selected strains were tested in fermentation with two different grape musts, yielding experimental wines differing in the levels of secondary compounds and polyphenol content, in function of the interaction “grape must composition/yeast strain”. This finding has an applicative value for the potentiality of utilizing the resource of strain variability as a tool to individuate suitable starter cultures, which are able to complement and optimize grape quality.  相似文献   

6.
Wine proteins play an important role in the quality of wine, because they affect taste, clarity and stability of product. The majority of wine proteins are in the range of 20–30 kDa. Different mass spectrometry (MS) techniques have been successfully applied to study the grape and wine proteins. By liquid chromatography (LC) electrospray ionization (ESI) MS and nano-LC/MS, nine dipeptides and 80 peptides were unambiguously identified in Champagne and Sauvignon Blanc wines, respectively. Using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) and surface-enhanced laser desorption/ionization TOF, the protein and peptide fingerprints in Chardonnay, Sauvignon Blanc and Muscat of Alexandria wines were determined. MALDI-TOF identified the mesocarp proteome of six Vitis grape varieties. Proteins in different grape tissue extracts were also studied. The major grape pathogenic-related proteins are chitinases and thaumatin-like proteins, which both persist through the vinification process and cause hazes and sediments in bottled wines. ESI-MS, LC/ESI-MS and MALDI-TOF analysis of these proteins in grape and wine were also used to characterize different grape varieties.  相似文献   

7.
选取广西、湖南等地野生葡萄,与经典酿酒葡萄比较,研究抗氧化活性和活性物质,同时监测葡萄酒发酵过程中各指标的动态变化,并对不同品种葡萄酒的抗菌性进行研究。结果表明:赤霞珠的酚类含量和抗氧化活性高于野生葡萄和玫瑰香葡萄,但野生葡萄酒的抗菌性能显著优于赤霞珠和玫瑰香葡萄酒。葡萄酒在发酵过程中其抗氧化活性和酚类物质含量均随发酵过程的进行而升高;总抗氧化活性与总酚含量、氧自由基清除能力与原花青素含量成显著正相关,相关系数均大于0.989;总花色苷含量在发酵初期上升,后期下降,葡萄酒颜色变浅。  相似文献   

8.
Over recent decades, the average ethanol concentration of wine has increased, largely due to consumer preference for wine styles associated with increased grape maturity; sugar content increases with grape maturity, and this translates into increased alcohol content in wine. However, high ethanol content impacts wine sensory properties, reducing the perceived complexity of flavors and aromas. In addition, for health and economic reasons, the wine sector is actively seeking technologies to facilitate the production of wines with lower ethanol content. Nonconventional yeast species, in particular, non-Saccharomyces yeasts, have shown potential for producing wines with lower alcohol content. These yeast species, which are largely associated with grapes preharvest, are present in the early stages of fermentation but, in general, are not capable of completing alcoholic fermentation. We have evaluated 50 different non-Saccharomyces isolates belonging to 24 different genera for their capacity to produce wine with a lower ethanol concentration when used in sequential inoculation regimes with a Saccharomyces cerevisiae wine strain. A sequential inoculation of Metschnikowia pulcherrima AWRI1149 followed by an S. cerevisiae wine strain was best able to produce wine with an ethanol concentration lower than that achieved with the single-inoculum, wine yeast control. Sequential fermentations utilizing AWRI1149 produced wines with 0.9% (vol/vol) and 1.6% (vol/vol) (corresponding to 7.1 g/liter and 12.6 g/liter, respectively) lower ethanol concentrations in Chardonnay and Shiraz wines, respectively. In Chardonnay wine, the total concentration of esters and higher alcohols was higher for wines generated from sequential inoculations, whereas the total concentration of volatile acids was significantly lower. In sequentially inoculated Shiraz wines, the total concentration of higher alcohols was higher and the total concentration of volatile acids was reduced compared with those in control S. cerevisiae wines, whereas the total concentrations of esters were not significantly different.  相似文献   

9.
The presence of the fungal pathogen, Botrytis cinerea, in the vineyard causes reductions in both quality and quantity of grapes and wine. Because proteins are involved in the foam stabilization of sparkling wines, we have undertaken, for the first time, a thorough proteomic analysis of two champagne base wines prepared with either healthy or botrytized Chardonnay grapes, using two-dimensional electrophoresis (2DE) coupled with immunodetection and tandem mass spectrometry. Most of the identified proteins were from grape origin: invertase and pathogenesis-related (PR) proteins. The disappearance of numerous grape proteins was observed in the botrytized wine, suggesting that they were probably degraded or even repressed or the result of a differential expression of grape proteins upon fungal infection. On the other hand, two pectinolytic enzymes secreted by B. cinerea were found in the botrytized wine.  相似文献   

10.
The main volatile by-products of the alcoholic fermentation of grape wine, cider and apple pulp wine were investigated to determine if any correlated with spoilage resistance in the latter two. Spoilage was visually detected after seven days in low-alcohol grape wine in comparison to 11 and 16 days in cider and apple pulp wine, respectively. Acetaldehyde, ethyl acetate, methanol, propanol, isobutanol and amyl alcohols were the main fermentation by-products detected in all three wines. There were highest concentrations of acetaldehyde, ethyl acetate, methanol and propanol in grape wine and, therefore, these by-products could not be implicated in spoilage resistance in apple wines. Increased concentrations of isobutanol and amyl alcohols, however, in cider and apple pulp wine in comparison to grape wine might have been the reason for spoilage resistance in the apple wines.  相似文献   

11.
In environmental toxicology, the most commonly used techniques used to visualise lysosomes in order to determine their responses to pollutants (LSC test: lysosomal structural changes test; LMS test: lysosomal membrane stability test) are based on the histochemical application of lysosomal marker enzymes. In mussel digestive cells, the marker enzymes used are β-glucuronidase (β-Gus) and hexosaminidase (Hex). The present work has been aimed at determining the distribution of these lysosomal marker enzymes in the various compartments of the endo-lysosomal system (ELS) of mussel digestive cells and at exploring whether intercellular transfer of lysosomal enzymes occurs between digestive and basophilic cells. Immunogold cytochemistry has allowed us to conclude that β-Gus is present in every compartment of the digestive cell ELS, whereas Hex is not so widely distributed. Moreover, Hex is intimately linked to the lysosomal membrane, whereas β-Gus appears to be not necessarily membrane-bound. Therefore, two populations of heterolysosomes with different enzyme load and membrane stability have been distinguished in the digestive cell. In addition, heterolysosomes of different electron density have been commonly observed merging together by contact; we suggest that some might act as storage granules for lysosomal enzymes. On the other hand, β-Gus seems to be released to the digestive alveolar lumen in secretory lysosomes produced by basophilic cells and endocytosed by digestive cells. Regarding the implications of the present study on the interpretation of lysosomal biomarkers, we conclude that β-Gus, but not Hex, histochemistry provides an appropriate marker for the LSC test and that, although both lysosomal marker enzymes can be employed in the LMS test, different values would be obtained depending on the marker enzyme employed. This study was funded by the University of the Basque Country through a grant to Consolidated Research Groups. U.I. is a recipient of a pre-doctoral fellowship from the Basque Government.  相似文献   

12.
Lactic acid bacteria (LAB) are found in a great variety of habitats, including grape must and wines. There is a close relationship between the species of LAB which develop during fermentation and the eventual quality of the wine. For these reasons analytical techniques allowing fast and reliable identification of wine LAB are needed. In this work a simple and accurate protocol for identifying species of LAB isolated from grape must and wine is presented. This protocol is based on the amplification, directly from colony, of 16S rDNA and later digestion with one of the following restriction enzymes BfaI, MseI and AluI. A sequential use of the three enzymes is proposed to simplify LAB wine identification, first MseI, then BfaI and finally, if necessary, AluI digestion. The technique was able to discriminate 32 of the 36 LAB reference species tested and allowed the identification of 342 isolates from musts and wines. The isolates belonged to the species: Lactobacillus brevis, L. collinoides, L. coryniformis, L. bilgardii, L. mali, L. paracasei, Leuconostoc mesenteroides, Oenococcus oeni, Pediococcus parvulus and P. pentosaceus.  相似文献   

13.
Wine proteins play an important role in the quality of wine, because they affect taste, clarity and stability of product. The majority of wine proteins are in the range of 20-30 kDa. Different mass spectrometry (MS) techniques have been successfully applied to study the grape and wine proteins. By liquid chromatography (LC) electrospray ionization (ESI) MS and nano-LC/MS, nine dipeptides and 80 peptides were unambiguously identified in Champagne and Sauvignon Blanc wines, respectively. Using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) and surface-enhanced laser desorption/ionization TOF, the protein and peptide fingerprints in Chardonnay, Sauvignon Blanc and Muscat of Alexandria wines were determined. MALDI-TOF identified the mesocarp proteome of six Vitis grape varieties. Proteins in different grape tissue extracts were also studied. The major grape pathogenic-related proteins are chitinases and thaumatin-like proteins, which both persist through the vinification process and cause hazes and sediments in bottled wines. ESI-MS, LC/ESI-MS and MALDI-TOF analysis of these proteins in grape and wine were also used to characterize different grape varieties.  相似文献   

14.
We developed a new method for the analysis of active antioxidants that is based on their reactions with the BTS+ cation radical obtained by oxidation of ABTS, 2,2"-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt. The feasibility of this method was confirmed by electrochemical and kinetic studies of model antioxidants. BTS+ was shown to react rapidly with active and slowly with weak antioxidants, which allows it to be used as a model radical for the quantitative determination of the total content of natural antioxidants (antioxidant equivalent) in natural extracts and wines. Another analytical method based on the competitive oxidation of Pyrogallol Red (a detecting molecule) and the examined antioxidants by radicals derived from peroxynitrite was used for measuring the relative activity of antioxidants. A combination of both methods helped measure the total concentration of antioxidants and their average specific activities (per molecule of active compound) in extracts from grape, olive, and tomato and in various popular beverages (wines, beers, and juices), as well as in the commercial concentrated food product Kréto-A®, made from grape, red wine, tomato, and olive. Red wine and red grape juice were shown to be the most rich in antioxidants (up to 20 mM), with their activity being similar to that of polyphenols.  相似文献   

15.
A xylanolytic yeast strain Aureobasidium pullulans NRRL Y 2311-1, was found to produce all enzymes required for complete degradation of galactomannan and galactoglucomannan. The enzymes differed in function and cellular localization: endo-β-1,4-mannanase was secreted into the culture fluid, β-mannosidase was strictly intracellular, and α-galactosidase and β-glucosidase were found both extracellularly and intracellularly. Among these enzyme components, only extracellular β-mannanase and intracellular β-mannosidase were inducible. The production of β-mannanase and β-mannosidase was 10- to 100-fold higher in galactomannan medium than in medium with one of the other carbon sources. β-mannanase and β-mannosidase were coinduced in glucose-grown cells by galactomannan, galactoglucomannan, and β-1,4-manno-oligosaccharides. The natural inducer of extracellular β-mannanase and intracellular β-mannosidase appeared to be β-1,4-mannobiose. Synthesis of both enzymes was completely repressed by glucose, mannose, or galactose. The synthetic glycoside methyl β-d-mannopyranoside served as a nonmetabolizable inducer of both β-mannosidase and β-mannanase. Received: 24 June 1996 / Accepted: 26 September 1996  相似文献   

16.
Analysis of wines, grape juices and cranberry juices forAlternaria toxins   总被引:1,自引:0,他引:1  
Sixty six samples of red and white wine from Ontario (VQA), British Columbia (VQA), Québec (“vins artisanaux”), imported wines (from Italy, South America and USA) and Canadian and US grape and cranberry juices were analysed for theAlternaria mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME). After cleanup on aminopropyl SPE columns, AOH and AME were initially determined by reversed phase LC with UV detection. Positive sample extracts were re-analysed by LC-tandem negative ion electrospray mass spectrometry (MS/MS) in multiple reaction mode. Overall mean method recoveries measured by LC-UV were 93% for AOH and 81% for AME. Limits of detection in wine (and juice) by LC-UV for AOH were 0.8 (0.4) ng/ml and for AME were 0.5 (0.4) ng/ml; they were below 0.01 ng/ml by LC-MS/MS. As determined by LC-MS/MS, AOH was found in 13/17 Canadian red wines at levels of 0.03 to 5.02 ng/ml and in 7/7 imported red wines at 0.27–19.4 ng/ml, usually accompanied by lower concentrations of AME. Red grape juices (5 positive/10 samples) contained only sub ng/ml levels of AOH or AME except for one sample (39 ng AME/ml). White wines (3/23 samples), white grape juices (0/4 samples) and cranberry juices (1/5 samples) contained little AOH/AME (≤1.5 ng/ml). Presented at the World Mycotoxin Forum, Noordwijk, The Netherlands, November 10–11, 2005  相似文献   

17.
Commercial polysaccharase preparations are applied to winemaking to improve wine processing and quality. Expression of polysaccharase-encoding genes in Saccharomyces cerevisiae allows for the recombinant strains to degrade polysaccharides that traditional commercial yeast strains cannot. In this study, we constructed recombinant wine yeast strains that were able to degrade the problem-causing grape polysaccharides, glucan and xylan, by separately integrating the Trichoderma reesei XYN2 xylanase gene construct and the Butyrivibrio fibrisolvens END1 glucanase gene cassette into the genome of the commercial wine yeast strain S. cerevisiae VIN13. These genes were also combined in S. cerevisiae VIN13 under the control of different promoters. The strains that were constructed were compared under winemaking conditions with each other and with a recombinant wine yeast strain expressing the endo-beta-1,4-glucanase gene cassette (END1) from B. fibrisolvens and the endo-beta-1,4-xylanase gene cassette (XYN4) from Aspergillus niger, a recombinant strain expressing the pectate lyase gene cassette (PEL5) from Erwinia chrysanthemi and the polygalacturonase-encoding gene cassette (PEH1) from Erwinia carotovora. Wine was made with the recombinant strains using different grape cultivars. Fermentations with the recombinant VIN13 strains resulted in significant increases in free-flow wine when Ruby Cabernet must was fermented. After 6 months of bottle ageing significant differences in colour intensity and colour stability could be detected in Pinot Noir and Ruby Cabernet wines fermented with different recombinant strains. After this period the volatile composition of Muscat d'Alexandria, Ruby Cabernet and Pinot Noir wines fermented with different recombinant strains also showed significant differences. The Pinot Noir wines were also sensorial evaluated and the tasting panel preferred the wines fermented with the recombinant strains.  相似文献   

18.
The stilbene resveratrol is a stress metabolite produced by Vitis vinifera grapevines during fungal infection, wounding or UV radiation. Resveratrol is synthesised particularly in the skins of grape berries and only trace amounts are present in the fruit flesh. Red wine contains a much higher resveratrol concentration than white wine, due to skin contact during fermentation. Apart from its antifungal characteristics, resveratrol has also been shown to have cancer chemopreventive activity and to reduce the risk of coronary heart disease. It acts as an antioxidant and anti-mutagen and has the ability to induce specific enzymes that metabolise carcinogenic substances. The objective of this pilot study was to investigate the feasibility of developing wine yeasts with the ability to produce resveratrol during fermentation in both red and white wines, thereby increasing the wholesomeness of the product. To achieve this goal, the phenylpropanoid pathway in Saccharomyces cerevisiae would have to be introduced to produce p-coumaroyl-CoA, one of the substrates required for resveratrol synthesis. The other substrate for resveratrol synthase, malonyl-CoA, is already found in yeast and is involved in de novo fatty-acid biosynthesis. We hypothesised that production of p-coumaroyl-CoA and resveratrol can be achieved by co-expressing the coenzyme-A ligase-encoding gene (4CL216) from a hybrid poplar and the grapevine resveratrol synthase gene (vst1) in laboratory strains of S. cerevisiae. This yeast has the ability to metabolise p-coumaric acid, a substance already present in grape must. This compound was therefore added to the synthetic media used for the growth of laboratory cultures. Transformants expressing both the 4CL216 and vst1 genes were obtained and tested for production of resveratrol. Following beta-glucosidase treatment of organic extracts for removal of glucose moieties that are typically bound to resveratrol, the results showed that the yeast transformants had produced the resveratrol beta-glucoside, piceid. This is the first report of the reconstruction of a biochemical pathway in a heterologous host to produce resveratrol.  相似文献   

19.
Summary Mango (Mangifera indica L) is the most popular and the choicest fruit of India. A major portion (nearly 60–70%) of the total quantity produced is locally consumed and a sizable portion is exported to other countries. In the present study, six varieties of mango, which are abundantly available in the region were selected for wine production and the conditions for juice extraction were optimized. It was found that the mango juices were similar to grape juice in terms of sugar and acidity. After fermentation, the ethanol concentration was 7–8.5% w/v, the methanol concentration was slightly higher than that of grape wines and other volatile compounds were present in comparable amounts. From the physicochemical characteristics of the mango wine produced, it was observed that aromatic components were comparable in concentration to those of grape wine.  相似文献   

20.

Background and Aims

Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors.

Methods and Results

We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses.

Conclusions

Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars.

Significance of the Study

The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号