首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ocular infections are a leading cause of vision loss. It has been previously suggested that predatory prokaryotes might be used as live antibiotics to control infections. In this study, Pseudomonas aeruginosa and Serratia marcescens ocular isolates were exposed to the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. All tested S. marcescens isolates were susceptible to predation by B. bacteriovorus strains 109J and HD100. Seven of the 10 P. aeruginosa isolates were susceptible to predation by B. bacteriovorus 109J with 80% being attacked by M. aeruginosavorus. All of the 19 tested isolates were found to be sensitive to at least one predator. To further investigate the effect of the predators on eukaryotic cells, human corneal-limbal epithelial (HCLE) cells were exposed to high concentrations of the predators. Cytotoxicity assays demonstrated that predatory bacteria do not damage ocular surface cells in vitro whereas the P. aeruginosa used as a positive control was highly toxic. Furthermore, no increase in the production of the proinflammatory cytokines IL-8 and TNF-alpha was measured in HCLE cells after exposure to the predators. Finally, injection of high concentration of predatory bacteria into the hemocoel of Galleria mellonella, an established model system used to study microbial pathogenesis, did not result in any measurable negative effect to the host. Our results suggest that predatory bacteria could be considered in the near future as a safe topical bio-control agent to treat ocular infections.  相似文献   

2.

The past decade has brought a significant rise in antimicrobial resistance, and the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) have considerably aggravated a threat to public health, causing nosocomial infections worldwide. The objective of the current study was to isolate novel probiotic strain with antimicrobial activity against multidrug-resistant ESKAPE pathogens. For this purpose, eighteen breastfed infant faeces were collected and lactic acid bacteria (LAB) with antagonistic activity were isolated. Out of 102 anaerobic LAB isolated, only nine exhibited inhibitory activity against all ESKAPE pathogens. These selected nine isolates were further characterized for their probiotic attributes such as lysozyme tolerance, simulated gastrointestinal tolerance, cellular auto-aggregation and cell surface hydrophobicity. Bile salt deconjugation and cholesterol-lowering capacity was also determined. Among all nine, isolate LBM220 was found to possess superior probiotic potential. Confirmatory identification of isolate LBM220 was done by both 16S rRNA sequence analysis and mass spectrometric analysis using MALDI-TOF. Based on BLAST result, isolate LBM220 was identified as Lactobacillus gasseri. Phylogenetic analysis of Lactobacillus gasseri LBM220 [accession number MN097539] was performed. Also, detailed safety evaluation study of Lact. gasseri LBM220 showed the presence of intrinsic antibiotic resistance and the absence of hemolytic, DNase, gelatinase and toxic mucinolytic activity. Time kill assay was also performed to confirm the strong kill effect of Lact. gasseri LBM220 on all six multidrug resistant ESKAPE pathogens. Thus, Lact. gasseri LBM220 can be utilized and explored as potential probiotic with therapeutic intervention.

  相似文献   

3.
Brazilian green and red propolis stand out as commercial products for different medical applications. In this article, we report the antimicrobial activities of the hydroalcoholic extracts of green (EGP) and red (ERP) propolis, as well as guttiferone E plus xanthochymol (8) and oblongifolin B (9) from red propolis, against multidrug-resistant bacteria (MDRB). We undertook the minimal inhibitory (MIC) and bactericidal (MBC) concentrations, inhibition of biofilm formation (MICB50), catalase, coagulase, DNase, lipase, and hemolysin assays, along with molecular docking simulations. ERP was more effective by displaying MIC and MBC values <100 μg mL−1. Compounds 8 and 9 displayed the lowest MIC values (0.98 to 31.25 μg mL−1) against all tested Gram-positive MDRB. They also inhibited the biofilm formation of S. aureus (ATCC 43300 and clinical isolate) and S. epidermidis (ATCC 14990 and clinical isolate), with MICB50 values between 1.56 and 6.25 μg mL−1. The molecular docking results indicated that 8 and 9 might interact with the catalase's amino acids. Compounds 8 and 9 have great antimicrobial potential.  相似文献   

4.

Background

Skin and surgical infections due to Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii are causes of patient morbidity and increased healthcare costs. These organisms grow planktonically and as biofilms, and many strains exhibit antibiotic resistance. This study examines the antibacterial and anti-biofilm activity of glycerol monolaurate (GML), as solubilized in a non-aqueous vehicle (5% GML Gel), as a novel, broadly-active topical antimicrobial. The FDA has designated GML as generally recognized as safe for human use, and the compound is commonly used in the cosmetic and food industries.

Methods

In vitro, bacterial strains in broths and biofilms were exposed to GML Gel, and effects on bacterial colony-forming units (CFUs) were assessed. In vivo,subcutaneous incisions were made in New Zealand white rabbits; the incisions were closed with four sutures. Bacterial strains were painted onto the incision sites, and then GML Gel or placebo was liberally applied to cover the sites completely. Rabbits were allowed to awaken and were examined for CFUs as a function of exposure time.

Results

In vitro, GML Gel was bactericidal for all broth culture and biofilm organisms in <1 hour and <4 hour, respectively; no CFUs were detected after the entire 24 h test period. In vivo, GML Gel inhibited bacterial growth in the surgical incision sites, compared to no growth inhibition in controls. GML Gel significantly reduced inflammation, as viewed by lack of redness in and below the incision sites.

Conclusions

Our findings suggest that 5% GML Gel is useful as a potent topical antibacterial and anti-inflammatory agent for prevention of infections.  相似文献   

5.
Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates.” We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens  相似文献   

6.
7.
8.
Combined Gram techniques have been reviewed in the interest of improving technical safety and reliability in the demonstration of bacteria, particularly the Gram-negative type. The many modifications of the technique present various difficulties (Brown and Brenn 193 1, Humberstone 1963, Taylor 1966, Luna 1968, Brown and Hopps 1973, Engbaek et al. 1979, Bancroft and Stevens 1982, Churukian and Schenk 1982).  相似文献   

9.
Phospholipid compositions of 20 strains of marine and estuarine bacteria were determined. Results showed that phospholipids of marine bacteria differed very little from those of nonmarine organisms with phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol being the predominant phospholipids in all strains examined. Lyso-phosphatidylethanolamine occurred in significant quantities among a number of the marine bacteria, and two of the isolates contained significant quantities of poly-beta-hydroxybutyrate. Effects of age and growth temperature on the phospholipid composition were also investigated. It is suggested that phylogenetic relationships among bacteria may be correlated with phospholipid composition.  相似文献   

10.
以大肠杆ATCC25922、金黄色葡萄球菌ATCC25923及其临床多重耐药分离株ETEC-AD9、MRSA-DF12共4株人体病原细菌为靶标菌,采用琼脂块法从越南槐内生真菌中筛选抗菌活性菌株,并以改良的微量肉汤稀释法测定其代谢产物的最小抑菌浓度;根据形态和分子特征鉴定拮抗菌株的分类学地位。结果表明,菌株TRPH-35的活菌块对各病原细菌的抑菌圈直径与阳性对照相当;其代谢产物对各病原菌的最小抑菌浓度为20~40μg/mL;初步鉴定该菌株为刺盘孢。本研究结果表明,菌株TRPH-35鉴定为刺盘孢,对参试病原细菌均显示强的抗菌活性,具有较大的开发应用潜力。  相似文献   

11.
Resistance rates are increasing among several problematic Gram-negative pathogens, a fact that has encouraged the development of new antimicrobial agents. This paper characterizes a Salmonella phage endolysin (Lys68) and demonstrates its potential antimicrobial effectiveness when combined with organic acids towards Gram-negative pathogens. Biochemical characterization reveals that Lys68 is more active at pH 7.0, maintaining 76.7% of its activity when stored at 4°C for two months. Thermostability tests showed that Lys68 is only completely inactivated upon exposure to 100°C for 30 min, and circular dichroism analysis demonstrated the ability to refold into its original conformation upon thermal denaturation. It was shown that Lys68 is able to lyse a wide panel of Gram-negative bacteria (13 different species) in combination with the outer membrane permeabilizers EDTA, citric and malic acid. While the EDTA/Lys68 combination only inactivated Pseudomonas strains, the use of citric or malic acid broadened Lys68 antibacterial effect to other Gram-negative pathogens (lytic activity against 9 and 11 species, respectively). Particularly against Salmonella Typhimurium LT2, the combinatory effect of malic or citric acid with Lys68 led to approximately 3 to 5 log reductions in bacterial load/CFUs after 2 hours, respectively, and was also able to reduce stationary-phase cells and bacterial biofilms by approximately 1 log. The broad killing capacity of malic/citric acid-Lys68 is explained by the destabilization and major disruptions of the cell outer membrane integrity due to the acidity caused by the organic acids and a relatively high muralytic activity of Lys68 at low pH. Lys68 demonstrates good (thermo)stability properties that combined with different outer membrane permeabilizers, could become useful to combat Gram-negative pathogens in agricultural, food and medical industry.  相似文献   

12.
13.
Minimal inocula of Gram-negative and positive bacteria were seeded into tryptose broth containing varying concentrations of dyes. Three dyes were used, namely crystal violet, brilliant green and ethyl violet. Growth rates were determined for 2, 4 and 6 hours incubation. All three dyes were equally effective in inhibiting Gram positive bacteria. Ethyl violet showed markedly less toxicity toward Gram negative bacteria than did either crystal violet or brilliant green.  相似文献   

14.
Minimal inocula of Gram-negative and positive bacteria were seeded into tryptose broth containing varying concentrations of dyes. Three dyes were used, namely crystal violet, brilliant green and ethyl violet. Growth rates were determined for 2, 4 and 6 hours incubation. All three dyes were equally effective in inhibiting Gram positive bacteria. Ethyl violet showed markedly less toxicity toward Gram negative bacteria than did either crystal violet or brilliant green.  相似文献   

15.
Salaria  N.  Furhan  J. 《Biology Bulletin》2021,48(3):281-289
Biology Bulletin - Actinomycetes derived from unfamiliar surroundings are considered as a promising supply for novel bioactive compounds comprising a broad range of biological actions. The current...  相似文献   

16.
Bovine mastitis is a costly disease in dairy cattle worldwide. As of yet, the control of bovine mastitis is mostly based on prevention by thorough hygienic procedures during milking. Additional strategies include vaccination and utilization of antibiotics. Despite these measures, mastitis is not fully under control, thus prompting the need for alternative strategies. The goal of this study was to isolate autochthonous lactic acid bacteria (LAB) from bovine mammary microbiota that exhibit beneficial properties that could be used for mastitis prevention and/or treatment. Sampling of the teat canal led to the isolation of 165 isolates, among which a selection of ten non-redundant LAB strains belonging to the genera Lactobacillus and Lactococcus were further characterized with regard to several properties: surface properties (hydrophobicity, autoaggregation); inhibition potential of three main mastitis pathogens, Staphylococcus aureus, Escherichia coli and Streptococcus uberis; colonization capacities of bovine mammary epithelial cells (bMEC); and immunomodulation properties. Three strains, Lactobacillus brevis 1595 and 1597 and Lactobacillus plantarum 1610, showed high colonization capacities and a medium surface hydrophobicity. These strains are good candidates to compete with pathogens for mammary gland colonization. Moreover, nine strains exhibited anti-inflammatory properties, as illustrated by the lower IL-8 secretion by E. coli-stimulated bMEC in the presence of these LAB. Full genome sequencing of five candidate strains allowed to check for undesirable genetic elements such as antibiotic resistance genes and to identify potential bacterial determinants involved in the beneficial properties. This large screening of beneficial properties while checking for undesirable genetic markers allowed the selection of promising candidate LAB strains from bovine mammary microbiota for the prevention and/or treatment of bovine mastitis.  相似文献   

17.
Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense.  相似文献   

18.
The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100µM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100µM THPTS followed by illumination, yielded a 6lg (≥99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections.  相似文献   

19.
20.
Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS) limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS) with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C18-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号