首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice (Oryza sativa L.) is one of the most important food crops, especially in Asia. The spikelet is a characteristic structure of grass inflorescences that determines crop output. However, the molecular mechanism that controls spikelet development and grain yield in rice remains unclear. In this study, we isolated a new osmads34 allelic mutant (i.e., osmads34-t). The osmads34-t mutant showed more primary branch numbers, short panicles, and long sterile lemmas. The sterile lemmas were transformed into the lemmas and had the lemma identity in the osmads34-t mutant, suggesting that the sterile lemma and lemma are homologous organs. Additionally, osmads34-t displayed smaller grains on its secondary branches of panicles and a lower seed-setting rate. These results suggest that OsMADS34 plays an important role in determination of grain size and yield in rice. OsMADS34 was expressed in tested organs and tissues, and its green fluorescent protein (GFP) signal was located in the nucleus. The result of this study will be used to understand the identity of unique organs in grass spikelets and may improve grain yield in breeding practice.  相似文献   

2.
3.
In rice, an E-class gene, OsMADS1, acts to specify the identities of the lemma and palea. In this study, the OsMADS1 gene with a CaMV35S promoter was transformed into a japonica cultivar, Zhonghua 11. All transgenic plants successfully showed similar phenotypes, including dwarfism, distorted panicles, decreased numbers of branches and spikelets, and elongated sterile lemma. Histological analysis showed that the elongated sterile lemma developed with silicified epidermal and sclerenchymal cells, which were lacking in the wild-type sterile lemma, suggesting that the elongated sterile lemma had assumed the identity of the lemma or palea. Some marker genes were subjected to a detailed analysis of the distribution of their expression among the lemma, palea and sterile lemma. DROOPING LEAF (DL) and OsMADS6 genes were only expressed in the normal lemma or palea, respectively. In the elongated sterile lemma, a high level of DL gene expression was detected, while no expression of OsMADS6 was found, implying that the sterile lemma transformed into the lemma but not the palea. These results provide clues to elucidate the mechanism of evolution from lemma to sterile lemma in rice. qPCR analysis also suggested that the ectopic expression of OsMADS1 induced abnormal brassinosteroid and gibberellin acid activation, and then resulted in developmental defects in the stem and panicle.  相似文献   

4.
Floral organ identity and specific number directly affect anthesis habits, fertilization and grain yield. Here, we identified a deformed interior floral organ 1 (difo1) mutant from selfing progenies of indica cv. Zhonghui8015 (Zh8015) after 60Co γ-ray treatment. Compared with the Zh8015 spikelet, the interior floral organs of the difo1 mutant present various numbers of stamens and stigmas, with no typical filament and no mature pollen grains. Most difo1 flowers exhibited an increased number of stigmas that were attached to the stamens and an intumescent ovule-like cell mass in addition to the ovary. Transverse sections of spikelets and scanning electron microscopy analysis revealed an indeterminate number of interior floral organs and abnormal early spikelet development for the difo1 mutant. Instead of the linear-shaped surface of wild-type stamens, difo1 displayed a glossy stamen surface resulting in immature stamens and complete sterility. In addition, the difo1 mutant exhibited delayed anthesis, rapid anthesis and non-extended stamens compared with wild type. Genetic analysis and gene mapping revealed that difo1 was controlled by a single recessive gene, which was fine-mapped to a 54-kb interval on the short arm of chromosome 4 between markers S22 and RM16439 harboring nine ORFs. Sequence analysis revealed that the mutant carried a single nucleotide deletion in its promoter region, which likely corresponded to the phenotype, in a C2H2-type zinc finger protein gene (LOC_Os04g08600). Moreover, qRT-PCR analysis showed a significantly down-regulated expression pattern for DIFO1 and many floral organ identity genes in the interior floral organs of difo1. DIFO1 is therefore an important floral organ development gene in rice, particularly with regard to interior organ meristem identity and floret primordium differentiation.  相似文献   

5.
Heading date is one of most important agronomic traits in rice. Flowering regulatory mechanisms have been elucidated in many cultivars through various approaches. Although study about flowering has been extensively examined in rice, but contributions of floral regulators had been poorly understood in a common genetic background for rice grown under paddy conditions. Thus, we compared the expression of 10 flowering-time genes — OsMADS50, OsMADS51, OsVIL2, OsPhyA, OsPhyB, OsPhyC, Ghd7, Hd1, OsGI, and OsTrx1 — in the same genetic background for ‘Dongjin’ rice (Oryza sativa) grown under paddy conditions when days were longer than 13.5 h. Whereas the wild type (WT) rice flowered 105 days after sowing, the latest mutant to do so was ostrx1, flowering 53 d later. This indicated that the gene is the strongest inducer among all of those examined. Mutations in OsMADS50 delayed flowering by 45 d when compared with the WT, suggesting that this MADS gene is another strong positive element. The third positive element was OsVIL2; mutations in the gene caused plants to flower 27 d late. In contrast, the double phytochrome mutant osphyA osphyB flowered 44 d earlier than the WT. The single mutant osphyB and the double mutant osphyB osphyC did the same, although not as early as the osphyA osphyB double mutant. These results demonstrated that phytochromes are major inhibitors under paddy conditions. Mutations in Ghd7 accelerated flowering by 34 d, indicating that the gene is also a major inhibitor. The hd1 mutants flowered 16 d earlier than the WT while a mutation in OsGI hastened flowering by 10 d, suggesting that both are weak flowering repressors. Of the two florigen genes (Hd3a being the other one), RFT1 played a major role under paddy conditions. Its expression was strongly promoted by Ehd1, which was negatively controlled by Ghd7. Here we show that phytochromes strongly inhibit flowering and OsTrx1 and OsMADS50 significantly induce flowering under paddy conditions through Ghd7-Ehd1-RFT1 pathway. Thus, we may be able to control heading date under paddy conditions through manipulating those genes, Ghd7, Ehd1 and RFT1.  相似文献   

6.
7.
8.

Key message

A Brd2 allele suppresses heading date by altering the expression of heading date regulators such as OsMADS50 , and also negatively regulates chlorophyll biosynthesis.

Abstract

Heading date and plant height are important determinants of yield in rice (Oryza sativa L.). In this study, we characterized a late heading, dwarf mutant known as lhdd10 selected following ethyl methane sulfonate (EMS)-treatment of ssp. indica cultivar 93-11. lhdd10 showed late heading, dwarfness and slightly darker-green leaves than wild-type 93-11 under long-day and short-day conditions. We isolated lhdd10 by map-based cloning; it encoded a putative FAD-linked oxidoreductase protein (a brassinosteroid biosynthetic gene) that localized to the nucleus. LHDD10 was constitutively expressed in various tissues, but more so in shoot apices and panicles. Our data showed that lhdd10 influences heading date by controlling the expression of heading date regulators, such as OsMADS50 in both LD and SD conditions. lhdd10 also negatively regulated expression of chlorophyll biosynthetic genes to reduce the chlorophyll content. Our data indicated that BRs play important roles in regulating heading date and chlorophyll biosynthesis. This work provides material that will allow study of how BRs regulate heading date in rice.
  相似文献   

9.
Plant height is one of the most important agronomic traits of plant architecture, and also affects grain yield in rice. In this study, we obtained a novel dwarf rice mutant of japonica variety Shennong9816, designated Shennong9816d. Compared with wild-type, the Shennong9816d plant height was significantly reduced, and the tiller number significantly increased. Additionally, the mutant yield component, and the number of large and small vascular bundles were significantly decreased compared with wild-type. Genetic analysis indicated that the Shennong9816d dwarf phenotype was controlled by a recessive nuclear gene, while the plant was shown to be sensitive to gibberellic acid. Using a large F2 population derived from a cross between Shennong9816d and the indica rice variety Habataki, the osh15(t) gene was fine mapped between RM20891 and RM20898, within a physical distance of 73.78 kb. Sequencing analysis showed that Shennong9816d carries a 1 bp mutation and a 30 bp insertion in the OSH15 region. These results suggest that osh15(t) is a novel allelic mutant originally derived from japonica variety Shennong9816, which may be useful for introducing the semi-dwarf phenotype to improve plant architecture in rice breeding practice.  相似文献   

10.
11.
12.
Plant height and grain shape are important traits that may affect yield in rice, and they therefore have enormous importance in breeding. A dwarf small-grain mutant (S525) was identified among progeny of the Indica rice restorer line ‘Xida 1B’ (wild type) raised from seeds treated with ethyl methanesulfonate. The dwarf and small-grain phenotypes were stably inherited after multi-generation selfing. Field-grown mutant plants showed the phenotypes of dwarfism, broad leaves, and small round grains. Genetic mapping and sequencing confirmed that S525 was a novel d1-allelic mutant. A single-base transition (G to A) in the functional dwarfism gene D1 at the conjunction site of the 11th intron caused excision or duplication of the 11th exon in the mRNA and resulted in translation of a defective Gα protein. The S525 showed enhanced salt tolerance compared with the wild type (WT), and the expression of genes associated with salt tolerance quantitatively increased in response to treatment with 200 mM NaCl. The S525 may be useful for future investigation of Gα functions and in the breeding of new dwarf rice cultivars.  相似文献   

13.

Key message

The split-hull phenotype caused by reduced lemma width and low lignin content is under control of SPH encoding a type-2 13-lipoxygenase and contributes to high dehulling efficiency.

Abstract

Rice hulls consist of two bract-like structures, the lemma and palea. The hull is an important organ that helps to protect seeds from environmental stress, determines seed shape, and ensures grain filling. Achieving optimal hull size and morphology is beneficial for seed development. We characterized the split-hull (sph) mutant in rice, which exhibits hull splitting in the interlocking part between lemma and palea and/or the folded part of the lemma during the grain filling stage. Morphological and chemical analysis revealed that reduction in the width of the lemma and lignin content of the hull in the sph mutant might be the cause of hull splitting. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene, sph (Os04g0447100), which encodes a type-2 13-lipoxygenase. SPH knockout and knockdown transgenic plants displayed the same split-hull phenotype as in the mutant. The sph mutant showed significantly higher linoleic and linolenic acid (substrates of lipoxygenase) contents in spikelets compared to the wild type. It is probably due to the genetic defect of SPH and subsequent decrease in lipoxygenase activity. In dehulling experiment, the sph mutant showed high dehulling efficiency even by a weak tearing force in a dehulling machine. Collectively, the results provide a basis for understanding of the functional role of lipoxygenase in structure and maintenance of hulls, and would facilitate breeding of easy-dehulling rice.
  相似文献   

14.
Sucrose transporters (SUTs) play a critical role on the phloem plasma membrane in loading sucrose into the phloem of source leaves for long-distance transport to sink organs. Rice has a small gene family of five SUTs, Oryza sativa SUT1 (OsSUT1) to OsSUT5. To identify rice SUTs that function as phloem loaders, we adopted a growth restoration assay of the severe growth retardation phenotype of atsuc2, a mutant of the best-characterized Arabidopsis phloem loader AtSUC2, by introducing OsSUTs. The rice SUT genes were expressed by two different promoters, the native phloem-specific promoter of AtSUC2 (pAtSUC2) and the constitutive Cauliflower Mosaic Virus 35S (pCaMV35S) promoter. Of all the transgenic atsuc2 plants, only pAtSUC2: OsSUT1 complemented the atsuc2 mutant phenotype in a comparable manner to wild type (WT), and consistent levels of soluble sugars and starch were recovered compared to those of WT. This suggests that OsSUT1 is a functional ortholog of the Arabidopsis AtSUC2 and functions as an apoplastic phloem loader. In addition, ossut1 mutants were produced via anther culture and their primary carbohydrate levels and growth phenotypes were indistinguishable from those of WT. This suggests that the rice phloem loader OsSUT1 function may not be essential for rice vegetative growth under normal conditions.  相似文献   

15.
16.
We report a new T-DNA-tagged rice plant chi7, which displays a severe dwarf phenotype, reduced plant vigour, and impaired panicle development in the homozygous state. By chromosome walking, T-DNA integration was mapped in chromosome 2, 1054-bp upstream of the translation start site of a gene (Os02g0820400), which we designate as DWARF SHOOT AND DEFECTIVE PANICLE1 (DSDP1). DSDP1 expression was unexpectedly higher in the homozygous mutant leaves than in the hemizygous mutant and control plant leaves. Mutant dsdp1 seeds, stored for 24 weeks, failed to germinate in soil. The growth vigour of the dsdp1 mutant reduced with increasing seed storage period. The dsdp1 mutant plants, grown in vitro on MS medium, formed short, stout, and ageotropic roots with lesser number of root hairs. The findings suggest that DSDP1 may function as a negative regulator of many developmental processes in rice.  相似文献   

17.
18.
19.
The rice EMS-derived mutant leaf adaxialized 1 (lad1) was isolated based on its upward rolling leaf phenotype. Besides the adaxially rolled leaf, many other agronomic traits were also compromised in lad1. The rolling trait was characterized by a noticeable alteration of bulliform cells in the adaxial side of the leaves. Map-based cloning showed a single nucleotide substitution in the promoter region of the KAN1 gene in lad1 mutant. Further, over-expressing and CRISPR/cas9-edited knockdown transgenic plants confirmed that KAN1 was responsible for the mutant phenotype of lad1. Yeast two-hybrid and bimolecular fluorescence complementation assay demonstrated that KAN1 can interact with the auxin response factors ARF3, ARF7 and ARF15. Physiologically, the contents of auxin (IAA), abscisic acid (ABA), jasmonic acid (JA) and gibberellin (GA) were all significantly increased in the lad1 mutant. Moreover, the GA3 content dramatically decrease in wild-type, but increased in lad1 under IAA induction. Additionally, the expression levels of several IAA and GA biosynthesis and responsive-related genes and genes involved in leaf polarity determination were altered in lad1. Therefore, we hypothesized that KAN1/ARFs protein complexes act as auxin-dependent regulatory units that play a conserved role in leaf development.  相似文献   

20.
The tpd1 (from tobacco pollen development 1) insertion mutant of tobacco (Nicotiana tabacum L., cv. Samsun) with extended flowering period was investigated in detail in the course of plant development, and the inheritance of the mutant phenotype was established. The wild-type and mutant plants did not differ in basic developmental indices until the floral transition; later they diverged in the characteristics of male reproductive organs, particularly in anther development and pollen maturation. The pollen of tpd1 plants was underdeveloped and sterile, resulting in a characteristic seedless phenotype with extended flowering period. When mutant flowers were pollinated with wild-type pollen, the tpd1 phenotype was maintained in at least two seed generations, indicating that this trait was heritable. The tpd1 phenotype was closely linked with kanamycin resistance; it follows that the developmental anomalies observed in our experiments immediately depended on the vector DNA insert. Our data presume that tpd1 is a rare dominant monogenic mutation with a narrowly directed physiological manifestation. A model is presented to describe the effect of TPD1. The tpd1 mutant would help identify and clone the new TPD1 gene crucial for viable pollen development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号