首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although the rotamase activity of the FK506 binding protein is inhibited by ligand binding, it is hypothesized that the ligand/protein complex itself may be responsible for the immunosuppressive effects of FK506. We have therefore examined the structure of the FK506 binding protein in the presence of an analog of FK506 (FK520) by a combination of fluorescence, CD, FTIR and calorimetry. While only small changes in the overall structure of the protein may be induced by ligand, a large change in thermal stability of the binding protein is observed.  相似文献   

3.
4.
Although topical tacrolimus (FK506) is known to promote repigmentation by increasing the pigmentation and migration of melanocytes, the mechanism through which FK506 regulates cell migration remains unclear. Here, we report that FK506 treatment enhanced cell spreading on laminin‐332 and increased migration in both melanocytes and melanoma cells. Interestingly, FK506 also increased the expression of syndecan‐2, a transmembrane heparan sulfate proteoglycan through c‐jun terminal kinase activation. Moreover, siRNA‐mediated reduction of syndecan‐2 expression decreased FK506‐mediated cell spreading and migration in melanoma cells and decreased focal adhesion kinase phosphorylation in both melanocytes and melanoma cells. Consistent with these effects on syndecan‐2 expression, FK506 enhanced the membrane and melanosome localizations of PKCβII, a regulator of tyrosinase activity. This suggests that FK506 may play a dual regulatory role by affecting both melanogenesis and migration in melanocyte‐derived cells. Interestingly, however, FK506 failed to show any synergistic effect on the migration of UVB‐treated melanocyte‐derived cells. Taken together, these data indicate that FK506 regulates cell migration by enhancing syndecan‐2 expression, further suggesting that syndecan‐2 could be a potential target for the treatment of patients with vitiligo.  相似文献   

5.
6.
Human FK506 binding protein 65 is associated with colorectal cancer   总被引:1,自引:0,他引:1  
We initiated the present study to identify new genes associated with colorectal cancer. In a previously published microarray study an EST (W80763), later identified as the gene hFKBP10 (NM_021939), was found to be strongly expressed in tumors while absent in the normal mucosa. Here we describe this gene hFKBP10 together with its encoded protein hFKBP65 as a novel marker associated with colorectal cancer. Analysis of 31 colorectal adenocarcinomas and 14 normal colorectal mucosa by RealTime PCR for hFKBP10 showed a significant up-regulation in tumors, when compared with normal mucosa. Immunohistochemical analysis of 26 adenocarcinomas and matching normal mucosa, as well as benign hyperplastic polyps and adenomas, using a monoclonal anti-hFKBP65 antibody, showed that the protein was not present in normal colorectal epithelial cells, but strongly expressed in the tumor cells of colorectal cancer. The protein was also expressed in fibroblasts of both normal mucosa and tumor tissue. Western blot analysis of matched tumors and normal mucosa supported the finding of increased hFKBP65 expression in tumors compared with normal mucosa, in addition to identifying the molecular mass of hFKBP65 to approximately 72 kDa. Cellular localization and glycosylation studies revealed the hFKBP65 protein to be localized in the endoplasmic reticulum, and to be N-glycosylated. In conclusion, the protein hFKBP65 is associated with colorectal cancer, and we hypothesize the protein to be involved in fibroblast and transformed epithelial cell-specific protein synthesis in the endoplasmic reticulum.  相似文献   

7.
The binary Clostridium botulinum C2 toxin consists of the binding/translocation component C2IIa and the separate enzyme component C2I. C2IIa delivers C2I into the cytosol of eukaryotic target cells where C2I ADP-ribosylates actin. After receptor-mediated endocytosis of the C2IIa/C2I complex, C2IIa forms pores in membranes of acidified early endosomes and unfolded C2I translocates through the pores into the cytosol. Membrane translocation of C2I is facilitated by the activities of host cell chaperone Hsp90 and the peptidyl-prolyl cis/trans isomerase (PPIase) cyclophilin A. Here, we demonstrated that Hsp90 co-precipitates with C2I from lysates of C2 toxin-treated cells and identified the FK506-binding protein (FKBP) 51 as a novel interaction partner of C2I in vitro and in intact mammalian cells. Prompted by this finding, we used the specific pharmacological inhibitor FK506 to investigate whether the PPIase activity of FKBPs plays a role during membrane translocation of C2 toxin. Treatment of cells with FK506 protected cultured cells from intoxication with C2 toxin. Moreover, FK506 inhibited the pH-dependent translocation of C2I across membranes into the cytosol but did not interfere with the enzyme activity of C2I or binding of C2 toxin to cells. Furthermore, FK506 treatment delayed intoxication with the related binary actin ADP-ribosylating toxins from Clostridium perfringens (iota toxin) and Clostridium difficile (CDT) but not with the Rho-glucosylating Clostridium difficile toxin A (TcdA). In conclusion, our results support the hypothesis that clostridial binary actin-ADP-ribosylating toxins share a specific FKBP-dependent translocation mechanism during their uptake into mammalian cells.  相似文献   

8.
The structures of enzymes reflect two tendencies that appear opposed. On one hand, they fold into compact, stable structures; on the other hand, they bind a ligand and catalyze a reaction. To be stable, enzymes fold to maximize favorable interactions, forming a tightly packed hydrophobic core, exposing hydrophilic groups, and optimizing intramolecular hydrogen-bonding. To be functional, enzymes carve out an active site for ligand binding, exposing hydrophobic surface area, clustering like charges, and providing unfulfilled hydrogen bond donors and acceptors. Using AmpC beta-lactamase, an enzyme that is well-characterized structurally and mechanistically, the relationship between enzyme stability and function was investigated by substituting key active-site residues and measuring the changes in stability and activity. Substitutions of catalytic residues Ser64, Lys67, Tyr150, Asn152, and Lys315 decrease the activity of the enzyme by 10(3)-10(5)-fold compared to wild-type. Concomitantly, many of these substitutions increase the stability of the enzyme significantly, by up to 4.7kcal/mol. To determine the structural origins of stabilization, the crystal structures of four mutant enzymes were determined to between 1.90A and 1.50A resolution. These structures revealed several mechanisms by which stability was increased, including mimicry of the substrate by the substituted residue (S64D), relief of steric strain (S64G), relief of electrostatic strain (K67Q), and improved polar complementarity (N152H). These results suggest that the preorganization of functionality characteristic of active sites has come at a considerable cost to enzyme stability. In proteins of unknown function, the presence of such destabilized regions may indicate the presence of a binding site.  相似文献   

9.
10.
The FK506-binding protein (FKBP12) is important in the immunosuppressant action of FK506 and rapamycin. We have investigated Trp side chain dynamics in FKBP12, with and without a bound immunosuppressant, by measuring the Trp time-resolved fluorescence anisotropy decay r(t). The r(t) for W59 in aqueous uncomplexed FKBP12 at 20 degrees C is well described by a single exponential with a recovered initial anisotropy, r(eff)o, of 0.192 and an overall rotational correlation time for the protein, phi p, of 4.7 ns; r(eff)o = 0.214 and phi p = 4.2 ns for the FKBP12/FK506 complex. Using an expression for the order parameter squared, namely S2 = r(eff)o/rTo, where rTo is the vitrified steady-state excitation anisotropy, we recovered an S2 of 0.75 for W59 fluorescence in uncomplexed FKBP12 and S2 approximately equal to 1 in the FKBP12/FK506 complex. Results obtained for the FKBP12/rapamycin complex are similar to those found for the FKBP12/FK506 complex. Minimum perturbation mapping simulations were performed on the free and complexed forms of FKBP12 and the results were generally in agreement with the experimental data.  相似文献   

11.
12.
We have isolated clones of an Arabidopsis gene (ROF1, forrotamaseFKBP) encoding a high molecular weight member of the FK506 binding protein (FKBP) family. The deduced amino acid sequence of ROF1 predicts a 551-amino acid, 62 kDa polypeptide which is 44% identical to human FKBP59 — a 59 kDa FKBP which binds to the 90 kDa heat shock protein and is associated with inactive steroid hormone receptors. ROF1 contains three FKBP12-like domains in the N-terminal portion of the protein (in contrast to two domains in mammalian FKBP59), an internal repeat structure associated with protein-protein interactions (tetratricopeptide repeats), and a putative calmodulin binding domain near the C-terminal region of the protein. No sequences associated with protein translocation out of the cytosol were found in ROF1.ROF1 mRNA was found at equivalent low levels in light-grown roots, stems, and flowers and at slightly higher levels in leaves. The abundance ofROF1 mRNA increased several-fold under stress conditions such as wounding or exposure to elevated NaCl levels.  相似文献   

13.
The abilities of FK506 and rapamycin to block distinct signal transduction pathways are mediated by soluble binding proteins. Previously, a family of these receptors has been recognized that includes a 25 kDa protein, FKBP25. We now report the isolation of a cDNA for FKBP25 from a human hippocampal cDNA library by oligonucleotide screening. The nucleotide sequence reveals an open reading frame that encodes a 224 amino acid polypeptide. Human FKBP25 shows 97% amino acid identity with bovine FKBP25 and 62% homology with human FKBP12.  相似文献   

14.
J Ma  M B Bhat    J Zhao 《Biophysical journal》1995,69(6):2398-2404
The cytosolic receptor for immunosuppressant drugs, FK506 binding protein (FKBP12), maintains a tight association with ryanodine receptors of sarcoplasmic reticulum (SR) membrane in skeletal muscle. The interaction between FKBP12 and ryanodine receptors resulted in distinct rectification of the Ca release channel. The endogenous FKBP-bound Ca release channel conducted current unidirectionally from SR lumen to myoplasm; in the opposite direction, the channel deactivated with fast kinetics. The binding of FKBP12 is likely to alter subunit interactions within the ryanodine receptor complex, as revealed by changes in conductance states of the channel. Both on- and off-rates of FKBP12 binding to the ryanodine receptor showed clear dependence on the membrane potential, suggesting that the binding sites of FKBP12 reside in or near the conduction pore of the Ca release channel. Rectification of the Ca release channel would prevent counter-current flow during the rapid release of Ca from SR membrane, and thus may serve as a negative feedback mechanism that participates in the process of muscle excitation-contraction coupling.  相似文献   

15.
Human FKBP25 (hFKBP25) is a nuclear immunophilin and interacts with several nuclear proteins, hence involving in many nuclear events. Similar to other FKBPs, FK506 binding domain (FKBD) of hFKBP25 also binds to immunosuppressive drugs such as rapamycin and FK506, albeit with a lower affinity for the latter. The molecular basis underlying this difference in affinity could not be addressed due to the lack of the crystal structure of hFKBD25 in complex with FK506. Here, we report the crystal structure of hFKBD25 in complex with FK506 determined at 1.8 Å resolution and its comparison with the hFKBD25–rapamycin complex, bringing out the microheterogeneity in the mode of interaction of these drugs, which could possibly explain the lower affinity for FK506.  相似文献   

16.
Kotaka M  Ye H  Alag R  Hu G  Bozdech Z  Preiser PR  Yoon HS  Lescar J 《Biochemistry》2008,47(22):5951-5961
The emergence of multi-drug-resistant strains of Plasmodium parasites has prompted the search for alternative therapeutic strategies for combating malaria. One possible strategy is to exploit existing drugs as lead compounds. FK506 is currently used in the clinic for preventing transplant rejection. It binds to a alpha/beta protein module of approximately 120 amino acids known as the FK506 binding domain (FKBD), which is found in various organisms, including human, yeast, and Plasmodium falciparum (PfFKBD). Antiparasitic effects of FK506 and its analogues devoid of immunosuppressive activities have been demonstrated. We report here the crystallographic structure at 2.35 A resolution of PfFKBD complexed with FK506. Compared to the human FKBP12-FK506 complex reported earlier, the structure reveals structural differences in the beta5-beta6 segment that lines the FK506 binding site. The presence in PfFKBD of Cys-106 and Ser-109 (substituting for His-87 and Ile-90, respectively, in human FKBP12), which are 4-5 A from the nearest atom of the FK506 compound, suggests possible routes for the rational design of analogues of FK506 with specific antiparasitic activity. Upon ligand binding, several conformational changes occur in PfFKBD, including aromatic residues that shape the FK506 binding pocket as shown by NMR studies. A microarray analysis suggests that FK506 and cyclosporine A (CsA) might inhibit parasite development by interfering with the same signaling pathways.  相似文献   

17.
18.
The calcium release channel (CRC)/ryanodine receptor (RyRec) has been identified as the foot structure of the sarcoplasmic reticulum (SR) and provides the pathway for calcium efflux required for excitation-contraction coupling in skeletal muscle. The CRC has previously been reported to consist of four identical 565-kDa protomers. We now report the identification of a 12-kDa protein which is tightly associated with highly purified RyRec from rabbit skeletal muscle SR. N-terminal amino acid sequencing and cDNA cloning demonstrates that the 12-kDa protein from fast twitch skeletal muscle is the binding protein for the immunosuppressant drug FK506. In humans, FK506 binds to the 12-kDa FK506-binding protein (FKBP12) and blocks calcium-dependent T cell activation. We find that FKBP12 and the RyRec are tightly associated in skeletal muscle SR on the basis of: 1) co-purification through sequential heparin-agarose, hydroxylapatite, and size exclusion chromatography columns; 2) coimmunoprecipitation of the RyRec and FKBP12 with anti-FKBP12 antibodies; and 3) subcellular localization of both proteins to the terminal cisternae of the SR, and not in the longitudinal tubules of SR, in fast twitch skeletal muscle. The molar ratio of FKBP12 to RyRec in highly purified RyRec preparations is approximately 1:4, indicating that one FKBP12 molecule is associated with each calcium release channel/foot structure.  相似文献   

19.
20.
PvFKBP35 is a member of the FK506 binding protein family (FKBP) from Plasmodium vivax. The FK506-binding domain of PvFKBP35 shows a canonical peptidylprolyl cis–trans isomerase (PPIase) activity. To understand the role of PvFKBP35 in the parasite, we have performed NMR studies. Here, we report the assignment of the FK506-binding domain of PvFKBP35.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号