首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determining the proper time to flower is important to ensure the reproductive success of plants. The model plant Arabidopsis is able to measure day-length and promotes flowering in long day (LD) conditions. One of the most prominent mechanisms in photoperiodic flowering is the clock-regulated gene expression of CONSTANS (CO) and the stabilization and activation of CO protein by light (regarded as external coincidence). We recently demonstrated that timing of the blue-light dependent formation of FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and GIGANTEA (GI) protein complex is crucial for regulating the timing of CO gene expression. The expression of FKF1 and GI is clock regulated, and their expression patterns have the same phase in LD (regarded as internal coincidence) but not in short day (SD) conditions, where floral induction is greatly delayed. Hence, timing of the FKF1-GI complex formation is regulated by the coincidence of both external and internal cues. Here, we propose a molecular mechanism for CO regulation by FKF1-GI complex formation.Key words: Arabidopsis, circadian clock, photoperiodic flowering, CONSTANS, GIGANTEA, FKF1, CDF1  相似文献   

2.
Xu GY  Rocha PS  Wang ML  Xu ML  Cui YC  Li LY  Zhu YX  Xia X 《Planta》2011,234(1):47-59
Many abiotic stimuli, such as drought and salt stresses, elicit changes in intracellular calcium levels that serve to convey information and activate adaptive responses. Ca2+ signals are perceived by different Ca2+ sensors, and calmodulin (CaM) is one of the best-characterized Ca2+ sensors in eukaryotes. Calmodulin-like (CML) proteins also exist in plants, but their functions at the physiological and molecular levels are largely unknown. In this report, we present data on OsMSR2 (Oryza sativa L. Multi-Stress-Responsive gene 2), a novel calmodulin-like protein gene isolated from rice Pei’ai 64S (Oryza sativa L.). Expression of OsMSR2 was strongly up-regulated by a wide spectrum of stresses, including cold, drought, and heat in different tissues at different developmental stages of rice, as revealed by both microarray and quantitative real-time RT-PCR analyses. Analysis of the recombinant OsMSR2 protein demonstrated its potential ability to bind Ca2+ in vitro. Expression of OsMSR2 conferred enhanced tolerance to high salt and drought in Arabidopsis (Arabidopsis thaliana) accompanied by altered expression of stress/ABA-responsive genes. Transgenic plants also exhibited hypersensitivity to ABA during the seed germination and post-germination stages. The results suggest that expression of OsMSR2 modulated salt and drought tolerance in Arabidopsis through ABA-mediated pathways.  相似文献   

3.
Summary Mineral transport across the plasma membrane of plant cells is controlled by an electrochemical gradient of protons. This gradient is generated by an ATP-consuming enzyme in the membrane known as a proton pump, or H+-ATPase. The protein has a catalytic subunit of Mr=100,000 and is a prominent band when plasma membrane proteins are analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We generated specific rabbit polyclonal antibody against the Mr=100,000 H+-ATPase and used the antibody to screen λgtll expression vector libraries of plant DNA. Several phage clones producing immunoreactive protein, and presumably containing DNA sequences for the ATPase structural gene, were isolated and purified from a carrot cDNA library and a Arabidopsis genomic DNA library. These studies represent our first efforts at cloning the structural gene for a plant plasma membrane transport protein. Applicability of the technique to other transport protein genes and the potential for use of recombinant DNA technology in plant mineral transport research are discussed.  相似文献   

4.
In plants, cyclic GMP is involved in signal transduction in response to light and gibberellic acid. For cyclic AMP, a potential role during the plant cell cycle was recently reported. However, cellular targets for cyclic nucleotides in plants are largely unknown. Here we report on the identification and characterisation of a new gene family in Arabidopsis, which share features with cyclic nucleotide-gated channels from animals and inward-rectifying K+ channels from plants. The identified gene family comprises six members (Arabidopsis thaliana cyclic nucleotide-gated channels, AtCNGC1–6) with significant homology among the deduced proteins. Hydrophobicity analysis predicted six membrane-spanning domains flanked by hydrophilic amino and carboxy termini. A putative cyclic nucleotide binding domain (CNBD) which contains several residues that are invariant in other CNBDs was located in the carboxy terminus. This domain overlaps with a predicted calmodulin (CaM) binding site, suggesting interaction between cyclic nucleotide and CaM regulation. We demonstrated interaction of the carboxy termini of AtCNGC1 and AtCNGC2 with CaM in yeast, indicating that the CaM binding sites are functional. Furthermore, it was shown that both AtCNGC1 and AtCNGC2 can partly complement the K+-uptake-deficient yeast mutant CY162. Therefore, we propose that the identified genes constitute a family of plant cyclic nucleotide- and CaM-regulated ion channels.  相似文献   

5.
Golgi‐resident type–II membrane proteins are asymmetrically distributed across the Golgi stack. The intrinsic features of the protein that determine its subcompartment‐specific concentration are still largely unknown. Here, we used a series of chimeric proteins to investigate the contribution of the cytoplasmic, transmembrane and stem region of Nicotiana benthamiana N–acetylglucosaminyltransferase I (GnTI) for its cis/medial‐Golgi localization and for protein–protein interaction in the Golgi. The individual GnTI protein domains were replaced with those from the well‐known trans‐Golgi enzyme α2,6–sialyltransferase (ST) and transiently expressed in Nicotiana benthamiana. Using co‐localization analysis and N–glycan profiling, we show that the transmembrane domain of GnTI is the major determinant for its cis/medial‐Golgi localization. By contrast, the stem region of GnTI contributes predominately to homomeric and heteromeric protein complex formation. Importantly, in transgenic Arabidopsis thaliana, a chimeric GnTI variant with altered sub‐Golgi localization was not able to complement the GnTI‐dependent glycosylation defect. Our results suggest that sequence‐specific features in the transmembrane domain of GnTI account for its steady‐state distribution in the cis/medial‐Golgi in plants, which is a prerequisite for efficient N–glycan processing in vivo.  相似文献   

6.
Here we report on the production of functional recombinant SBPase of Chlamydomonas sp. W80 in Escherichia coli and the one-step purification of a polyhistidine-tagged fusion protein. The polyclonal antibody was raised against purified recombinant enzyme and cross-reacted with crude SBPase from Chlamydomonas, spinach, tobacco, and Arabidopsis leaves. Further, we investigated the levels of protein and activity of SBPase in different tissues of Arabidopsis plants.  相似文献   

7.
Two cDNA clones which appear to encode different subunits of NAD+-dependent isocitrate dehydrogenase (IDH; EC 1.1.1.41) were identified by homology searches from the Arabidopsis EST database. These cDNA clones were obtained and sequenced; both encoded full-length messages and displayed 82.7% nucleotide sequence identity over the coding region. The deduced amino acid sequences revealed preprotein lengths of 367 residues, with an amino acid identity of 86.1%. Genomic Southern blot analysis showed distinct single-copy genes for both IDH subunits. Both IDH subunits were expressed as recombinant proteins in Escherichia coli, and polyclonal antibodies were raised to each subunit. The Arabidopsis cDNA clones were expressed in Saccharomyces cerevisiae mutants which were deficient in either one or both of the yeast NAD+-dependent IDH subunits. The Arabidopsis cDNA clones failed to complement the yeast mutations; although both IDH-I and IDH-II were expressed at detectable levels, neither protein was imported into the mitochondria.  相似文献   

8.
9.
10.
Many stimuli such as hormones and elicitors induce changes in intracellular calcium levels to integrate information and activate appropriate responses. The Ca2+ signals are perceived by various Ca2+ sensors, and calmodulin (CaM) is one of the best characterized in eukaryotes. Calmodulin‐like (CML) proteins extend the Ca2+ toolkit in plants; they share sequence similarity with the ubiquitous and highly conserved CaM but their roles at physiological and molecular levels are largely unknown. Knowledge of the contribution of Ca2+ decoding proteins to plant immunity is emerging, and we report here data on Arabidopsis thaliana CML9, whose expression is rapidly induced by phytopathogenic bacteria, flagellin and salicylic acid. Using a reverse genetic approach, we present evidence that CML9 is involved in plant defence by modulating responses to bacterial strains of Pseudomonas syringae. Compared to wild‐type plants, the later responses normally observed upon flagellin application are altered in knockout mutants and over‐expressing transgenic lines. Collectively, using PAMP treatment and P. syringae strains, we have established that CML9 participates in plant innate immunity.  相似文献   

11.
PIN-FORMED (PIN)-mediated polar auxin transport (PAT) is involved in key developmental processes in plants. Various internal and external cues influence plant development via the modulation of intracellular PIN polarity and, thus, the direction of PAT, but the mechanisms underlying these processes remain largely unknown. PIN proteins harbor a hydrophilic loop (HL) that has important regulatory functions; here, we used the HL as bait in protein pulldown screening for modulators of intracellular PIN trafficking in Arabidopsis thaliana. Calcium-dependent protein kinase 29 (CPK29), a Ca2+-dependent protein kinase, was identified and shown to phosphorylate specific target residues on the PIN-HL that were not phosphorylated by other kinases. Furthermore, loss of CPK29 or mutations of the phospho-target residues in PIN-HLs significantly compromised intracellular PIN trafficking and polarity, causing defects in PIN-mediated auxin redistribution and biological processes such as lateral root formation, root twisting, hypocotyl gravitropism, phyllotaxis, and reproductive development. These findings indicate that CPK29 directly interprets Ca2+ signals from internal and external triggers, resulting in the modulation of PIN trafficking and auxin responses.

Ca2+-dependent protein kinase 29 directly phosphorylates the hydrophilic loop of PIN-FORMED proteins to modulate their intracellular trafficking and Arabidopsis development.  相似文献   

12.
Monoclonal antibodies against the K(+) channel KAT1 of Arabidopsis thaliana, a low abundance, plant plasma membrane protein, were generated by genetic immunisation to avoid the time and labour consuming purification of native or recombinant proteins and peptides usually necessary for conventional immunisation techniques. The resulting polyclonal and monoclonal antibody sera recognised a single protein band in a microsomal fraction of wild-type A. thaliana leaves and in membrane fractions of transgenic yeast cells and tobacco plants expressing the KAT1 protein. Therefore, genetic immunisation is suitable for generating monoclonal antibodies against plant proteins and particularly, against plant membrane proteins of low abundance.  相似文献   

13.
In planta expression of recombinant antibodies recognizing pathogen-specific antigens has been proposed as a strategy for crop protection. We report the expression of fusion proteins comprising a Fusarium-specific recombinant antibody linked to one of three antifungal peptides (AFPs) as a method for protecting plants against fungal diseases. A chicken-derived single-chain antibody specific to antigens displayed on the Fusarium cell surface was isolated from a pooled immunocompetent phage display library. This recombinant antibody inhibited fungal growth in vitro when fused to any of the three AFPs. Expression of the fusion proteins in transgenic Arabidopsis thaliana plants conferred high levels of protection against Fusarium oxysporum f.sp. matthiolae, whereas plants expressing either the fungus-specific antibody or AFPs alone exhibited only moderate resistance. Our results demonstrate that antibody fusion proteins may be used as effective and versatile tools for the protection of crop plants against fungal infection.  相似文献   

14.
Effect of knockout of the At4g20990 gene encoding α-carbonic anhydrase 4 (α-CA4) in Arabidopsis thaliana in plants grown in low light (LL, 80 μmol photons m?2 s?1) or in high light (HL, 400 μmol photons m?2 s?1) under long (LD, 16 h) or short (SD, 8 h) day length was studied. In α-CA4 knockout plants, under all studied conditions, the non-photochemical quenching was lower; the decrease was more pronounced under HL. This pointed to α-CA4 implication in the processes leading to energy dissipation in PSII antenna. In this context the content of major antenna proteins Lhcb1 and Lhcb2 was lower in α-CA4 knockouts than in wild-type (WT) plants under all growth conditions. The expression level of lhcb2 gene was also lower in mutants grown under LD, LL and HL in comparison to WT. At the same time, this level was higher in mutants grown under SD, LL and it was the same under SD, HL. Overall, the data showed that the knockout of the At4g20990 gene affected both the contents of proteins of PSII light-harvesting complex and the expression level of genes encoding these proteins, with peculiarities dependent on day length. These data together with the fact of a decrease of non-photochemical quenching of leaf chlorophyll a fluorescence in α-CA4-mut as compared with that in WT plants implied that α-CA4 participates in acclimation of photosynthetic apparatus to light intensity, possibly playing important role in the photoprotection. The role of this CA can be especially important in plants growing under high illumination conditions.  相似文献   

15.

Key message

We have expressed, purified, and biophysically characterized recombinant AHP1 and AHP2. Also, using computational homology models for AHP1, ARR7, and AHP1–ARR7 complex, we identified three-dimensional positioning of key amino acids.

Abstract

Cytokinin signaling involves activation of Arabidopsis Response Regulators (ARRs) by Arabidopsis Histidine Phosphotransfer Proteins (AHPs) by phosphorylation. Type-A ARRs are key regulators of several developmental pathways, but the mechanism underlying this phosphorylation and activation is not known in plants. In this study, we report the successful expression and purification of recombinant AHP1 and AHP2. Biophysical characterization shows that these two recombinant proteins were purified to homogeneity and possess well-defined secondary structures. Brief attempts to purify recombinant ARR7 posed problems during size-exclusion chromatography. Nevertheless, we generated computational homology models for AHP1, ARR7, and AHP1–ARR7 complex using crystal structures of homologous proteins from other organisms. The homology models helped to identify the three-dimensional positioning of the key conserved residues of AHP1 and ARR7 involved in phosphorylation. The similarity in positioning of these residues to other homologous proteins suggests that AHPs and type-A ARRs could be structurally conserved across kingdoms. Thus, our homology models can serve as valuable tools to gain structural insights into the phosphorylation and activation of cytokinin response regulators in plants.  相似文献   

16.
Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large‐scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed‐batch experiments with stably transfected cell pools, in which cell‐specific productivities up to 90 pg cell?1 day?1 and product concentrations up to 4 g L?1 could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non‐antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product‐independent manner. Biotechnol. Bioeng. 2013; 110: 1164–1173. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Few studies have investigated microtubules from plants that host pathogenic fungi. Considerable efforts are underway to find an antimitotic agent against plant pathogens like Phytophthora infestans. However, screening the effects of antifungal agents on plant tubulin in vivo or using purified native microtubule in vitro is a time consuming process. A recombinant, correctly folded, microtubule-like structure forming tubulin could accelerate research in this area. In this study, we cloned full length cDNAs isolated from potato leaves using reverse-transcribed polymerase chain reaction (RT-PCR). Solanum tuberosum (Stub) α-tubulin and β-tubulin were predicted to encode 449 and 451 amino acid long proteins with molecular masses of 57 kDa and 60 kDa, respectively. Average yields of α- and β-tubulin were 2.0–3.5 mg l?1 and 1.3–3.0 mg l?1 of culture, respectively. The amino acids, His6, Glu198, and Phe170 involved in benomyl sensitivity were conserved in Stub tubulin. The dimerization of tubulin monomers was confirmed by western blot analysis. When combined under appropriate conditions, these recombinant α- and β-tubulins were capable of polymerizing into microtubules. Accessibility of cysteine residues of tubulin revealed that important ligand binding sites were folded correctly. This recombinant tubulin could serve as a control of phytotoxicity of selected antimitotic fungicide compounds during in vitro screening experiments.  相似文献   

18.
The initiation of flowering in Arabidopsis is retarded or abolished by environmental stresses. Focusing on salt stress, we provide a molecular explanation for this well-known fact. A protein complex consisting of GI, a clock component important for flowering and SOS2, a kinase activating the [Na+] antiporter SOS1, exists under no stress conditions. GI prevents SOS2 from activating SOS1. In the presence of NaCl, the SOS2/GI complex disintegrates and GI is degraded. SO2, together with the Ca2+-activated sensor of sodium ions, SOS3, activates SOS1. In gi mutants, SOS1 is constitutively activated and gi plants are more highly salt tolerant than wild type Arabidopsis. The model shows GI as a transitory regulator of SOS pathway activity whose presence or amount connects flowering to environmental conditions.  相似文献   

19.
The Campanian Ignimbrite (CI) eruption, dated by 40Ar/39Ar and various stratigraphic methods to ca. 39,000 cal BP, generated a massive ash plume from its source in southern Italy across Southeastern and Eastern Europe. At the Kostenki-Borshchevo open-air sites on the Middle Don River in Russia, Upper Paleolithic artifact assemblages are buried below, within, and above the CI tephra (which is redeposited by slope action at most sites) on the second terrace. Luminescence and radiocarbon dating, paleomagnetism, and soil and pollen stratigraphy provide further basis for correlation with the Greenland and North Atlantic climate stratigraphy. The oldest Upper Paleolithic occupation layers at Kostenki-Borshchevo may be broadly correlated with warm intervals that preceded the CI event and Heinrich Event 4 (HE4; Greenland Interstadial: GI 12-GI 9) dating to ca. 45,000-41,000 cal BP. These layers contain an industry not currently recognized in other parts of Europe. Early Upper Paleolithic layers above the CI tephra are correlated with HE4 and warm intervals that occurred during 38,000-30,000 cal BP (GI 8-GI 5), and include an assemblage that is assigned to the Aurigancian industry, associated with skeletal remains of modern humans.  相似文献   

20.
Zhang Y  Schläppi M 《Planta》2007,227(1):233-243
Plants have large families of proteins sharing a conserved eight-cysteine-motif (8CM) domain. The biological functions of these proteins are largely unknown. EARLI1 is a cold responsive Arabidopsis gene that encodes a hybrid proline-rich protein (HyPRP) with a three-domain architecture: a putative signal peptide at the N-terminus, a proline-rich domain (PRD) in the middle, and an 8CM domain at the C-terminus. We report here that yeast cells expressing different EARLI1 genes had significantly higher rates of freezing survival than empty-vector transformed controls. Arabidopsis plants with knocked down EARLI1 genes had an increased tendency for freezing-induced cellular damage. EARLI1-GFP fluorescence in transgenic plants and immunoblot analyses using protoplasts suggested cell wall localization for EARLI1 proteins. Immunoblot analyses showed that EARLI1 proteins form higher order complexes in plants, and that the PRD is a soluble and the 8CM an insoluble protein domain. We propose that EARLI1 proteins have a bimodular architecture in which the PRD may interact with the cell wall and the 8CM domain with the plasma membrane to protect the cells during freezing stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号