首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Auto-antibodies with specificity to self-antigens have been implicated in a wide variety of neurological diseases, including Parkinson''s (PD) and Alzheimer''s diseases, being sensitive indicators of neurodegeneration and focus for disease prevention. Of particular interest are the studies focused on the auto-immune responses to amyloidogenic proteins associated with diseases and their applications in therapeutic treatments such as vaccination with amyloid antigens and antibodies in PD, Alzheimer''s disease and potentially other neurodegeneration ailments.

Methodology/Principal Findings

Generated auto-antibodies towards the major amyloidogenic protein involved in PD Lewy bodies – α-synuclein and its amyloid oligomers and fibrils were measured in the blood sera of early and late PD patients and controls by using ELISA, Western blot and Biacore surface plasmon resonance. We found significantly higher antibody levels towards monomeric α-synuclein in the blood sera of PD patients compared to controls, though the responses decreased with PD progression (P<0.0001). This indicates potential protective role of autoimmunity in maintaining the body homeostasis and clearing protein species whose disbalance may lead to amyloid assembly. There were no noticeable immune responses towards amyloid oligomers, but substantially increased levels of IgGs towards α-synuclein amyloid fibrils both in PD patients and controls, which subsided with the disease progression (P<0.0001). Pooled IgGs from PD patients and controls interacted also with the amyloid fibrils of Aβ (1–40) and hen lysozyme, however the latter were recognized with lower affinity. This suggests that IgGs bind to the generic amyloid conformational epitope, displaying higher specificity towards human amyloid species associated with neurodegeneration.

Conclusions/Significance

Our findings may suggest the protective role of autoimmunity in PD and therefore immune reactions towards PD major amyloid protein – α-synuclein can be of value in the development of treatment and diagnostic strategies, especially during the early disease stages.  相似文献   

2.
This paper addresses the topic of the electrophysiology of thought processes in a biological system. A classification and criticism of definitions of intelligence is presented. The engenderment of intelligent regulations of behavior is seen to involve stipulations concerning the relation of metron to logon informational content (MacKay, 1950). The relationship is of a nature similar to that hidden behind the Maxwell demon (Maxwell, 1871), and to certain difficulties already faced in quantum mechanics. As thought structures observe conservation of variety under transformations, the conservation of entropy in thermodynamics is investigated. Conservation occurs in a Carnot cycle (Carnot, 1824) and only under a Lorenz transformation subject to a symmetry group formation. The symmetry group is topic neutral and could be applied to informational structures. The need for the informational equivalents of a Carnot cycle and Lorenz transformations is described. To depict the interaction of energy and structure, equivalents of Einstein's field equations are needed. The study of symmetry groups by electrophysiological methods is seen to be at least feasible.  相似文献   

3.
Parkinson's disease (PD) is the second most prevalent age-related, neurodegenerative disorder, affecting >1% of the population over the age of 60. PD pathology is marked by intracellular inclusions composed primarily of the protein α-synuclein (α-syn). These inclusions also contain copper, and the interaction of Cu(2+) with α-syn may play an important role in PD fibrillogenesis. Here we report the stoichiometry, affinity, and coordination structure of the Cu(2+)-α-syn complex. Electron paramagnetic resonance (EPR) titrations show that monomeric α-syn binds 1.0 equiv of Cu(2+) at the protein N-terminus. Next, an EPR competition technique demonstrates that α-syn binds Cu(2+) with a K(d) of ≈0.10 nM. Finally, EPR and electron spin echo modulation (ESEEM) applied to a suite of mutant and truncated α-syn constructs reveal a coordination sphere arising from the N-terminal amine, the Asp2 amide backbone and side chain carboxyl group, and the His50 imidazole. The high binding affinity identified here, in accord with previous measurements, suggests that copper uptake and sequestration may be a part of α-syn's natural function, perhaps modulating copper's redox properties. The findings further suggest that the long-range interaction between the N-terminus and His50 may have a weakening effect on the interaction of α-syn with lipid membranes, thereby mobilizing monomeric α-syn and hastening fibrillogenesis.  相似文献   

4.
Parkinson's disease (PD) is a major age-related neurodegenerative disorder characterized by a massive and specific loss of dopaminergic neurons of the substantia nigra pars compacta. The cellular alterations are clinically translated into an invalidating movement disability associated to three canonical symptoms that are bradykinesia, resting tremor and rigidity. The exact causes of this neuronal loss are unknown, but a network of evidences indicates a major contribution of orchestrated cell death processes, also known as apoptosis. Apoptotic cell death is a normal process, the alteration of which triggers several pathologies including cancer and neurodegenerative disorders. Exhaustive work has been done to delineate the cellular mechanisms responsible for the exacerbated cell death of dopaminergic neurons observed in PD. Overall, the oncogene p53 has been identified as a key effector protein.This review will focus on the clues linking p53 to the etiology of PD and the evidences that this protein may be at the center of multiple signaling cascades not only altered by mutations of various proteins responsible for familial cases of PD but also on more general sporadic cases of this devastating disease.  相似文献   

5.
Chronic psychosocial stress is increasingly being recognised as a risk factor for sporadic Alzheimer's disease (AD). The hypothalamic–pituitary–adrenal axis (HPA axis) is the major stress response pathway in the body and tightly regulates the production of cortisol, a glucocorticoid hormone. Dysregulation of the HPA axis and increased levels of cortisol are commonly found in AD patients and make a major contribution to the disease process. The underlying mechanisms remain poorly understood. In addition, within the general population there are interindividual differences in sensitivities to glucocorticoid and stress responses, which are thought to be due to a combination of genetic and environmental factors. These differences could ultimately impact an individuals’ risk of AD. The purpose of this review is first to summarise the literature describing environmental and genetic factors that can impact an individual's HPA axis reactivity and function and ultimately AD risk. Secondly, we propose a mechanism by which genetic factors that influence HPA axis reactivity may also impact inflammation, a key driver of neurodegeneration. We hypothesize that these factors can mediate glucocorticoid priming of the immune cells of the brain, microglia, to become pro-inflammatory and promote a neurotoxic environment resulting in neurodegeneration. Understanding the underlying molecular mechanisms and identifying these genetic factors has implications for evaluating stress-related risk/progression to neurodegeneration, informing the success of interventions based on stress management and potential risks associated with the common use of glucocorticoids.  相似文献   

6.
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder beyond Alzheimer’s disease, affecting approximately 1% of people over the age of 65. The major pathological hallmarks of PD are significant loss of nigrostriatal dopaminergic (DA) neurons and the presence of intraneuronal protein inclusions termed Lewy bodies. Sporadic cases represent more than 90% of total patients with PD, while there exist several inherited forms caused by mutations in single genes. Identification and characterization of these causative genes and their products can help us understand the molecular mechanisms of DA neuronal cell death and design new approaches to treat both the inherited and sporadic forms of PD. Based on the finding that a point mutation in the gene encoding α-synuclein (αSyn) protein causes a rare familial form of PD, PARK1, it is now confirmed that αSyn is a major component of Lewy bodies in patients with sporadic PD. Abnormal accumulation of αSyn protein is considered a neurotoxic event in the development of PD. PARK4, another dominantly inherited form of familial PD, is caused by duplication or triplication of the αSyn gene locus. This genetic mutation results in the production of large amounts of wild-type αSyn protein, supporting the αSyn-induced neurodegeneration hypothesis. On the other hand, the recessively inherited early-onset Parkinsonism is caused in about half of the cases with loss-of-function mutations in PARK2, which encodes E3 ubiquitin ligase parkin in the ubiquitin–proteasome system. These findings have shed light on DA neurodegeneration caused by accumulation of toxic protein species that can be degraded and/or detoxicated through parkin activity. In this review, we will focus on the regulatory roles of αSyn and parkin proteins in DA neuronal cell apoptosis and provide evidence for the possible therapeutic action of parkin in sporadic patients with PD.  相似文献   

7.
The relationship between the June drop of almond fruits(cv. Truoito) and the levels of extractable and diffusible IAA of the fruit wasstudied. June drop started almost simultaneously with thedecreasein the concentration of extractable free and ester IAA from seeds and theamountof diffusible free IAA from persisting fruits. The drop lasted for a period ofabout 17 days, during which time the auxin decreased constantly. In a secondexperiment, the relationship between fruit size, fruit drop and level of auxinwas examined. The fruits were classified according to size into threecategories, large, intermediate and small. Throughout the experiment thepercentage of small fruits that abscised (70%) was five times higher than thatof the other categories of fruits. The small persisting fruits had lower levelsof extractable free and diffusible free IAA than fruits of intermediate andlarge size. When the process of abscission advanced and the diffusion of theauxin had been interrupted, an increase in the concentration of extractablefreeand peptidic IAA in the seeds and pericarps of the abscising fruits wasobservedcompared with the persisting fruits.  相似文献   

8.
Peng J  Andersen JK 《Aging cell》2011,10(2):255-262
Neurogenesis, the production of new neurons from less differentiated precursor cells, normally occurs in adult brains in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. Neurogenesis declines with aging. In previous studies, neurogenesis was stimulated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) in young animals. In this study, we examined the effect of acute MPTP administration and mutant α-synuclein A53T on neurogenesis and migration of newborn neurons in the aged (23-month) vs. young (2-month) rodent brain. Cell proliferation and neurogenesis were assessed via bromodeoxyuridine labeling and immunostaining for cell type-specific markers. In the aged brain, neural precursor cells in the rostral SVZ retained the capacity for proliferation and migration in response to MPTP-induced Parkinsonism, although the response is less robust than in younger animals. Furthermore, in transgenic mice that overexpress mutant α-synuclein (A53T), brains examined day 21 after MPTP administration showed markedly decreased olfactory bulb and substantia nigra neurogenesis. Our data suggest that in addition to aging effects associated with decline in the number of newly generated cells, mutant α-synuclein reduces MPTP-induced neurogenesis. This could provide a novel therapeutic target for chronic brain repair in this condition.  相似文献   

9.
10.

Background

The pathological features of Parkinson’s disease (PD) include an abnormal accumulation of α-synuclein in the surviving dopaminergic neurons. Though PD is multifactorial, several epidemiological reports show an increased incidence of PD with co-exposure to pesticides such as Maneb and paraquat (MP). In pesticide-related PD, mitochondrial dysfunction and α-synuclein oligomers have been strongly implicated, but the link between the two has not yet been understood. Similarly, the biological effects of α-synuclein or its radical chemistry in PD is largely unknown. Mitochondrial dysfunction during PD pathogenesis leads to release of cytochrome c in the cytosol. Once in the cytosol, cytochrome c has one of two fates: It either binds to apaf1 and initiates apoptosis or can act as a peroxidase. We hypothesized that as a peroxidase, cytochrome c leaked out from mitochondria can form radicals on α-synuclein and initiate its oligomerization.

Method

Samples from controls, and MP co-exposed wild-type and α-synuclein knockout mice were studied using immuno-spin trapping, confocal microscopy, immunohistochemistry, and microarray experiments.

Results

Experiments with MP co-exposed mice showed cytochrome c release in cytosol and its co-localization with α-synuclein. Subsequently, we used immuno-spin trapping method to detect the formation of α-synuclein radical in samples from an in vitro reaction mixture consisting of cytochrome c, α-synuclein, and hydrogen peroxide. These experiments indicated that cytochrome c plays a role in α-synuclein radical formation and oligomerization. Experiments with MP co-exposed α-synuclein knockout mice, in which cytochrome c-α synuclein co-localization and interaction cannot occur, mice showed diminished protein radical formation and neuronal death, compared to wild-type MP co-exposed mice. Microarray data from MP co-exposed wild-type and α-synuclein knockout mice further showed that the absence of α-synuclein per se or its co-localization with cytochrome c confers protection from MP co-exposure, as several important pathways were unaffected in α-synuclein knockout mice.

Conclusions

Altogether, these results show that peroxidase activity of cytochrome c contributes to α-synuclein radical formation and oligomerization, and that α-synuclein, through its co-localization with cytochrome c or on its own, affects several biological pathways which contribute to increased neuronal death in an MP-induced model of PD.
  相似文献   

11.
Although Parkinson's disease (PD) is generally a sporadic neurological disorder, the discovery of monogenic, hereditable forms of the disease has been crucial in delineating the molecular pathways that lead to this pathology. Genes responsible for familial PD can be ascribed to two categories based both on their mode of inheritance and their suggested biological function. Mutations in parkin, PINK1 and DJ-1 cause of recessive Parkinsonism, with a variable pathology often lacking the characteristic Lewy bodies (LBs) in the surviving neurons. Intriguingly, recent findings highlight a converging role of all these genes in mitochondria function, suggesting a common molecular pathway for recessive Parkinsonism. Mutations in a second group of genes, encoding alpha-synuclein (α-syn) and LRRK2, are transmitted in a dominant fashion and generally lead to LB pathology, with α-syn being the major component of these proteinaceous aggregates. In experimental systems, overexpression of mutant proteins is toxic, as predicted for dominant mutations, but the normal function of both proteins is still elusive. The fact that α-syn is heavily phosphorylated in LBs and that LRRK2 is a protein kinase, suggests that a link, not necessarily direct, exists between the two. What are the experimental data supporting a common molecular pathway for dominant PD genes? Do α-syn and LRRK2 target common molecules? Does LRRK2 act upstream of α-syn? In this review we will try to address these of questions based on the recent findings available in the literature.  相似文献   

12.
13.

Background

Previously we reported 1 μM synthetic human amyloid beta1-42 oligomers induced cofilin dephosphorylation (activation) and formation of cofilin-actin rods within rat hippocampal neurons primarily localized to the dentate gyrus.

Results

Here we demonstrate that a gel filtration fraction of 7PA2 cell-secreted SDS-stable human Aβ dimers and trimers (Aβd/t) induces maximal neuronal rod response at ~250 pM. This is 4,000-fold more active than traditionally prepared human Aβ oligomers, which contain SDS-stable trimers and tetramers, but are devoid of dimers. When incubated under tyrosine oxidizing conditions, synthetic human but not rodent Aβ1-42, the latter lacking tyrosine, acquires a marked increase (620 fold for EC50) in rod-inducing activity. Gel filtration of this preparation yielded two fractions containing SDS-stable dimers, trimers and tetramers. One, eluting at a similar volume to 7PA2 Aβd/t, had maximum activity at ~5 nM, whereas the other, eluting at the void volume (high-n state), lacked rod inducing activity at the same concentration. Fractions from 7PA2 medium containing Aβ monomers are not active, suggesting oxidized SDS-stable Aβ1-42 dimers in a low-n state are the most active rod-inducing species. Aβd/t-induced rods are predominantly localized to the dentate gyrus and mossy fiber tract, reach significance over controls within 2 h of treatment, and are reversible, disappearing by 24 h after Aβd/t washout. Overexpression of cofilin phosphatases increase rod formation when expressed alone and exacerbate rod formation when coupled with Aβd/t, whereas overexpression of a cofilin kinase inhibits Aβd/t-induced rod formation.

Conclusions

Together these data support a mechanism by which Aβd/t alters the actin cytoskeleton via effects on cofilin in neurons critical to learning and memory.  相似文献   

14.
Eduard Jendek 《ZooKeys》2012,(249):61-76
The work treats 52 species–group names related to genus Agrilus incorrectly cited in the world catalogue of Bellamy (2008). The name dimorphus Théry, 1941 from the genus Aphanisticus and mulleri Théry, 1925 from the genus Australodraco are also treated. Four primary or secondary homonyms are replaced by substitute names. Most of the proposed changes refer to the availability, validity, spelling and authorship of the names. The following new nomenclatural acts are proposed: Four new substitute names for homonyms: gola Jendek for filiformis Gory & Laporte, 1839 not Herbst, 1801; lukesi Obenberger, 1936 for modicus Kerremans, 1892 not Solier, 1833; thomsoni Jendek for impressipennis Thomson not Uhler, 1855; walkerianus Jendek (Aphanisticus) for sulcicollis Walker not Lacordaire, 1835. New synonyms: turei Curletti, 2002 is an objective synonym of thurei Curletti, 1996. Lectotype designations: A lectotype is designated for Agrilus dualaecola Obenberger, 1923.  相似文献   

15.
All three cholesterol oxidation products implicated thus far in the pathogenesis of Alzheimer's disease, 7β-hydroxycholesterol, 24-hydroxycholesterol, and 27-hydroxycholesterol, markedly enhance the binding of amyloid-beta (Aβ) to human differentiated neuronal cell lines (SK-N-BE and NT-2) by up-regulating net expression and synthesis of CD36 and β1-integrin receptors. However, only 24-hydroxycholesterol markedly potentiates the pro-apoptotic and pro-necrogenic effects of Aβ(1-42) peptide on these cells: 7β-hydroxycholesterol and 27-hydroxycholesterol, like unoxidized cholesterol, show no potentiating effect. This peculiar behavior of 24-hydroxycholesterol at physiologic concentrations (1 μm) depends on its strong enhancement of the intracellular generation of NADPH oxidase-dependent reactive oxygen species (ROS), mainly H(2) O(2) , and the consequent impairment of neuronal cell redox equilibrium, measured in terms of the GSSG/GSH ratio. Cell incubation with antioxidants quercetin or genistein prevents 24-hydroxycholesterol's pro-oxidant effect and potentiation of Aβ-induced necrosis and apoptosis. Thus, the presence of 24-hydroxycholesterol in the close vicinity of amyloid plaques appears to enhance the adhesion of large amounts of Aβ to the plasma membrane of neurons and then to amplify the neurotoxic action of Aβ by locally increasing ROS steady-state levels. This report further supports a primary involvement of altered brain cholesterol metabolism in the complex pathogenesis of Alzheimer's disease.  相似文献   

16.
Parkinson disease (PD), a prevalent neurodegenerative motor disorder, is characterized by the rather selective loss of dopaminergic neurons and the presence of α-synuclein-enriched Lewy body inclusions in the substantia nigra of the midbrain. Although the etiology of PD remains incompletely understood, emerging evidence suggests that dysregulated iron homeostasis may be involved. Notably, nigral dopaminergic neurons are enriched in iron, the uptake of which is facilitated by the divalent metal ion transporter DMT1. To clarify the role of iron in PD, we generated SH-SY5Y cells stably expressing DMT1 either singly or in combination with wild type or mutant α-synuclein. We found that DMT1 overexpression dramatically enhances Fe(2+) uptake, which concomitantly promotes cell death. This Fe(2+)-mediated toxicity is aggravated by the presence of mutant α-synuclein expression, resulting in increased oxidative stress and DNA damage. Curiously, Fe(2+)-mediated cell death does not appear to involve apoptosis. Instead, the phenomenon seems to occur as a result of excessive autophagic activity. Accordingly, pharmacological inhibition of autophagy reverses cell death mediated by Fe(2+) overloading. Taken together, our results suggest a role for iron in PD pathogenesis and provide a mechanism underlying Fe(2+)-mediated cell death.  相似文献   

17.
Escherichia coli gene fimA was the most frequent gene that occurred in the intestine of all investigated groups. All subjects with fimA gene had significantly higher values of tumor necrosis factor alpha (TNF-α) and CRP than those with other E. coli genes. There was also a tendency to increased serum interleukin (IL)-6 levels in patients carrying the fimA gene; however, no relation was observed to serum IL-8 and IL-10. Patients with Crohn’s disease had significantly higher IL-6 than those with ulcerative colitis (UC) and controls. The highest levels of TNF-α were detected in the UC group. There were no significant differences in serum IL-8 and IL-10 between all three groups. The presence of E. coli gene fimA in the large bowel of patients with IBD is related to the immunological activity of the disease which may be important from the aspect of therapeutical strategy.  相似文献   

18.
The study was conducted to assess the role of eukaryotic initiation factor 2 (eIF2α) in progressive dopaminergic neuronal death employing various interventions (YM08, 4μ8C, AEBSF, salubrinal, ursolic acid) of endoplasmic reticulum (ER) stress signaling. The protein level of all the ER stress related signaling factors (GRP78, IRE1α, ATF6, eIF2α, ATF4, XBP-1, GADD153) were estimated after 3 and 7 day of experiment initiation. Findings with single administration of interventions showed that salubrinal exhibited significant protection against rotenone induced adverse alterations in comparison to other interventions. Therefore, further study was expanded with repeat dose of salubrinal. Rotenone administration in rat brain caused the significant biochemical alterations, dose dependent progressive neuronal apoptosis and altered neuronal morphology which was significantly attenuated with salubrinal treatment. In conclusion, findings showed that rotenone administration caused the dose dependent progressive neuronal death including cardinal role of eIF2α, suggesting the potential pharmacological utilization of salubrinal or salubrinal like molecules in therapeutics of Parkinson's diseases.  相似文献   

19.
Matrix metalloproteinases (MMPs), together with their endogenous inhibitors (TIMPs) form an enzymatic system that plays an important role in a variety of physiological and pathological conditions. These proteins are also expressed in the brain, especially under pathological conditions, in which glia as well as invading inflammatory cells provide the major source of the MMP activity. Surprisingly little is known about the MMP function(s) in adult neuronal physiology. This review describes available data on this topic, which is presented in a context of knowledge about the MMP/TIMP system in other organs as well as in brain disorders. An analysis of the MMP and TIMP expression patterns in the brain, along with a consideration of their regulatory mechanisms and substrates, leads to the proposal of possible roles of the MMP system in the brain. This analysis suggests that MMPs may play an important role in the neuronal physiology, especially in neuronal plasticity, including their direct participation in the remodeling of synaptic connections-a mechanism pivotal for learning and memory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号