首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gammarus spp. are widespread throughout a diverse range of freshwater habitats and can be the dominant part of many benthic macroinvertebrate assemblages, in terms of both numbers and/or biomass. Although the vast majority of studies have emphasized the herbivorous nature of Gammarus spp. and their ‘shredder’ functional feeding group (FFG) classification, we show that a far wider food base is exploited than has been previously acknowledged. This ‘plasticity’ as herbivore/predator is linked to the success of Gammarus spp. in persisting in and colonizing/invading disturbance-prone ecosystems. Intraguild predation and cannibalism are more common than previously realized. This behaviour appears to be a causal mechanism in many amphipod species replacements. Additionally, Gammarus spp. are major predators of other members of the macroinvertebrate community. Furthermore, while many studies have emphasized fish predation on Gammarus spp., we illustrate how this fish: amphipod, predator: prey interaction may be a two-way process, with Gammarus spp. themselves preying upon juvenile and wounded/trapped fish. We urge that a new realism be adopted towards the trophic ecology of Gammarus spp. and their role as predators and prey and that previously established FFG assumptions of both the food and the feeder be questioned critically.  相似文献   

2.
Gammarus spp. (Crustacea: Amphipoda) are widespread throughout a diverse range of marine, freshwater and estuarine/brackish habitats, often dominating benthic macroinvertebrate communities in terms of both numbers and/or biomass. Gammarus spp. are the dominant macroinvertebrate prey items of many fish, whether as a seasonal food source or a year-round staple. Selective predation by fish on Gammarus spp. is often linked to parasitism and the body size of the prey. Gammarus spp. populations are under increasing threat from both pollution and replacement/displacement by introduced species. Loss of populations and species invasions/replacements could have significant impacts on native predator species if the predator(s) cannot successfully adapt their feeding patterns to cope with non-indigenous Gammarus prey species. Despite this, many fish predation studies do not identify Gammarus prey to species level. This lack of precision could be important, as Gammarus spp. exhibit wide variations in physiochemical tolerances, habitat requirements, abilities to invade and susceptibility to replacement. Although rarely acknowledged, the impacts of nonpiscean predators (particularly macroinvertebrates) on Gammarus prey species may frequently be stronger than those exerted by fish. A major aim of this review is to ascertain the current importance of Gammarus as a prey species, such that the implications of changes in Gammarus spp. populations can be more accurately assessed by interested groups such as ecologists and fisheries managers. We also review the dynamics of Gammarus spp. as prey to a diverse array of mammals, birds, amphibians, insects, flatworms, other crustaceans such as crabs and crayfish and, perhaps most importantly, other Gammarus spp.  相似文献   

3.
Jonas Dahl 《Oecologia》1998,117(1-2):217-226
I assessed the impact of both vertebrate and invertebrate predators on a lotic benthic community in a 1-month-long experiment, using enclosures containing cobble/gravel bottoms, with large-mesh netting that allowed invertebrates to drift freely. Brown trout (Salmo trutta) and leeches (Erpobdella octoculata) were used as predators and four treatments were tested: a predator-free control, leeches only, trout only, and leeches and trout together. A density of 26.7 leeches/m2 (20 leeches/enclosure) and 1.3 trout/m2 (one trout per enclosure) was stocked into the enclosures. The total biomass of invertebrate prey was significantly lower in the trout and trout plus leech treatments than in the leech and control treatments, which were due to strong negative effects of trout on Gammarus. On the individual prey taxon level, both trout and leeches affected the abundance of Asellus , Baetis and Ephemerella, whereas the abundance of Gammarus was only affected by trout, and the abundance of Orthocladiinae and Limnephilidae was only affected by leeches. In the treatment with trout and leeches together, the abundance of Ephemerella and Baetis was higher than when trout or leeches were alone, which was probably due to predator interactions. Leeches and trout had no effects on prey immigration but did affect per capita emigration rates. Both trout and leeches indirectly increased periphyton biomass in enclosures, probably due to their strong effects on grazers. Both trout and leeches were size-selective predators, with trout selecting large prey, and leeches selecting small prey. Size-selective predation by trout and leeches affected the size structure of five commonly consumed prey taxa. Trout produced prey populations of small sizes owing to consumption of large prey as well as increased emigration out of enclosures by these large prey. Leech predation produced prey assemblages of larger size owing to consumption and increased emigration of small prey. These results suggest that in lotic habits, predatory invertebrates can be as strong interactors as vertebrate predators. Received: 23 June 1997 / Accepted: 4 May 1998  相似文献   

4.
Stonefly nymphs use hydrodynamic cues to discriminate between prey   总被引:1,自引:0,他引:1  
Summary Playback experiments conducted in a Rocky Mountain, USA, stream determined whether predatory stonefly nymphs (Kogotus modestus; Plecoptera: PerlodiMae) used hydrodynamic cues to discriminate prey species from nonprey species. In the laboratory we recorded pressure wave patterns associated with swimming escape behavior of Baetis bicaudatus (Baetidae), the favored mayfly prey species, and those of a nonprey mayfly, Ephemerella infrequens (Ephemerellidae). We video taped the responses of 24-h starved Kogotus to Baetis playbacks, Ephemerella playbacks or no playbacks made by oscillating (or not) live mayflies (Ephemerella) or clear plastic models placed within in situ flow-through observation boxes. The probability of attacks per encounter with Baetis playbacks was highest and independent of the model type used, but Kogotus also showed an unexpected high probability of attacks per encounter when Ephemerella playbacks were made through live Ephemerella. Thus, Kogotus discriminated between Baetis and Ephemerella swimming patterns but only when playbacks were made through the plastic model. Kogotus never attacked motionless mayflies or motionless plastic models. We allowed some Kogotus to successfully capture one small Baetis immediately before playbacks, which resulted in a much higher probability of attacks per encounter with Baetis playbacks on either model and a heightened discrimination of prey versus nonprey playbacks. The probability of attacks per encounter by Kogotus with live Baetis swimming under similar experimental conditions was strikingly similar to its response to Baetis playbacks made by oscillating the plastic model after a successful capture. Order of playback presentation (Baetis first or Ephemerella first) did not influence predatory responses to mayfly swimming patterns. This study is the first to document the use of hydrodynamic cues by stream-dwelling predators for discrimination of prey from nonprey and provides a mechanism to explain selective predation by stoneflies on Baetis in nature.  相似文献   

5.
Predation refugia can facilitate the coexistence of predators and prey within an ecosystem by weakening trophic links between the two. The marginal macrophytes of shallow lakes are used facultatively by zooplankton to escape fish predation, leading to the stabilisation of lentic food webs. Little is known about such a role for the marginal macrophytes of lotic systems. In this paper, we examine whether the marginal macrophytes of chalk streams help buffer the interaction between the freshwater shrimp, Gammarus pulex and a benthic fish predator, Cottus gobio, both characteristically abundant in such systems. Quantitative surveys were taken of Gammarus and bullheads in winter and summer in a southern English chalk stream. These indicated that Gammarus seasonally switched their habitat preference, from marginal macrophytes in summer, to midchannel habitats in winter. Bullheads exhibited an opposite trend, preferring midchannel habitats in summer and all habitats, particularly marginal macrophytes, in winter. Large Gammarus and precopula pairs were found almost exclusively in the margins in summer. This spatial separation between Gammarus and bullheads in summer, though not in winter, was reflected in bullhead diets, as determined by gut analysis. In field manipulation experiments, bullhead presence was the strongest factor explaining the between‐habitat distribution of Gammarus in both summer and winter, indicating that the habitat shift of Gammarus was driven by the distribution of fish. Other abundant invertebrate taxa, including Asellus, mayflies and chironomids, exhibited little avoidance of habitat patches of high bullhead density. We conclude that marginal macrophytes in chalk streams can potentially facilitate the coexistence of high densities of both Gammarus and bullheads by spatially separating predator and prey in summer. They may further allow large populations of Gammarus to persist in the presence of high bullhead density at stretch‐wide spatial scales, by reducing the predation by bullheads of large breeding and newly born individuals of Gammarus in summer.  相似文献   

6.
Gammarus spp. are traditionally viewed under the functional feeding group (FFG) concept as herbivorous `shredders'. Although recent studies suggest that Gammarus should also be viewed as predators, this latter role remains contentious. Here, in a laboratory experiment, we objectively examine the balance between shredder and predator roles in a common freshwater species. Gammarus pulex preyed significantly on mayfly nymph, Baetis rhodani, in both the presence and absence of excess leaf material. There was no significant difference in predation where the alternative food, that is, leaf material, was present as compared to absent. Also, G. pulex shredded leaf material in the presence and absence of B. rhodani. However, shredding was significantly reduced where alternative food, that is, B. rhodani prey, was present as compared to absent. Further, G. pulex had a clear leaf species preference. Our results suggest that Gammarus function as both predators and shredders, with the balance of the two roles perhaps depending on food availability and quality. We discuss implications for the use of the FFG concept in assessing freshwater processes, and the role that Gammarus predation may play in structuring macroinvertebrate communities.  相似文献   

7.
8.
Dahl J  Peckarsky BL 《Oecologia》2003,137(2):188-194
Densities and species composition of predators could affect morphological defences, larval development and the timing of emergence of their prey. To address this issue we studied the morphology and life history of an ephemerellid mayfly, Ephemerella invaria, from two streams in a deciduous forested drainage basin in central New York. Both streams contained predatory fish, but densities and species composition of fish differed. A field survey provided evidence that Ephemerella inhabiting a stream with 10 fish species and high relative densities of fish emerged several weeks earlier and at smaller sizes than Ephemerella inhabiting a nearby tributary with ~2 fish species and low relative densities of fish. However, the two populations of mayflies showed no differences in defensive morphology or growth rates. In laboratory rearing experiments, we exposed Ephemerella larvae from these two locations to fish chemical cues or control water (no fish) over 2 months to test whether differences in life histories could be attributed to fish. Fish cues induced faster larval development, but also smaller size of mature Ephemerella individuals from both high and low predator locations. Although shorter development times in more dangerous environments could increase larval survival, smaller size of females results in a fecundity cost associated with this life history shift. Consistent with the field studies, laboratory rearing experiments revealed no effects of fish cues on Ephemerella's morphological defences. These data suggest that variation in the density or species composition of predators may favour the evolution of developmental plasticity to reduce mortality in the larval environment.  相似文献   

9.
This study examines the effects of changes in the prey frequency and abundance on prey selection among the four instars of Myzus persicae by the predator Macrolophus pygmaeus under laboratory conditions. The central hypothesis was that M. pygmaeus will become more selective as prey density increases. It was also observed that M. pygmaeus can occasionally abandon a prey item that had already been killed (non-consumptive prey mortality). It was assumed that the frequency of this behavior would increase with the prey size and prey density. For these purposes prey selection was evaluated by simultaneously presenting all instars of M. persicae to the predator in equal proportions and at increasing densities. M. pygmaeus showed a higher predation rate and a higher preference for smaller prey instars at all prey densities. However, if the predation rate by the predator is expressed in terms of biomass consumed, then biomass gain was higher when feeding on the larger instars of M. persicae. The prey selectivity was indicated by the total prey mortality (consumptive plus non-consumptive prey mortality) as well as by the non-consumptive prey mortality, was associated with relatively high prey densities, depending on the prey instar. Therefore, we argued that the predatory impact of M. pygmaeus on the various instars of the aphid depends not only on prey traits but also on their relative abundance in a patch. Observed decreases in biomass gain from larger prey were likely the result of high prey availability at densities before saturation, which might have caused confusion in the predator’s prey selection.  相似文献   

10.
Parasitism is emerging as one of the forces determining the outcome of biological invasions. Using field survey and laboratory experiments, we investigate parasitism as one of the factors mediating the interactions among invasive and native amphipods. An extensive survey (100 sites) of a small British island, revealed the native Gammarus duebeni celticus to be parasitised by the muscle wasting microsporidian Pleistophora mulleri and the acanthocephalan duck parasite Polymorphus minutus, the introduced European Gammarus pulex only by P. minutus and the North American Crangonyx pseudogracilis by neither. While Gammarus spp. were widespread in rivers (one or both species present in 64% of sites), C. pseudogracilis had a restricted distribution (7% of sites) and always co-occurred with Gammarus spp. In contrast, Gammarus spp. were absent from all pond/reservoir sites, with C. pseudogracilis present in over 90%. While the negative association of C. pseudogracilis with Gammarus spp. undoubtedly results from factors such as physico-chemical tolerance and predation as C. pseudogracilis can be heavily predated by Gammarus spp., it was notable that C. pseudogracilis co-occurred with Gammarus spp. more frequently when the latter were parasitised. Laboratory experiments clearly showed that predation on C. pseudogracilis was greatly diminished when G. d. celticus was parasitised by P. mulleri and G. pulex by P. minutus. Our study provides evidence that parasitism, by mediating a key interspecific interaction, is one of an array of interacting factors that may have a role in driving patterns of exclusion and co-existence in natives and invaders.  相似文献   

11.
In order to estimate predation risk in nature, two basic components of predation need to be quantified: prey vulnerability, and density risk. Prey vulnerability can be estimated from clearance rates obtained from enclosure experiments with and without predators. Density risk is a function of predator density, and the spatial and temporal overlap of the predator and prey populations. In the current study we examine the importance of the vertical component of overlap in making accurate estimates of predation risk from the invertebrate predator Mesocyclops edax on rotifer versus crustacean prey. The results indicate that assumptions of uniform predator and prey densities cause a significant underestimation of predation risk for many crustacean prey due to the coincident vertical migration of these prey with the predator. The assumption of uniformity is more reasonable for estimating predation risk for most rotifer prey.  相似文献   

12.
Experimental evidence on the determinants of prey vulnerability is scarce, especially for vertebrates in the field. Invasive species offer robust opportunities to explore prey vulnerability, because the intensity of predation on or by such animals has not been eroded by coevolution. Around waterbodies in tropical Australia, native meat ants (Iridomyrmex reburrus) consume many metamorph cane toads (Bufo marinus, an invasive anuran). We document the determinants of toad vulnerability, especially the roles of toad body size and ant density. Larger metamorphs were attacked sooner (because they attracted more ants), but escaped more often. Overall, smaller toads were more likely to be killed. Ant densities influenced toad responses, as well as attack rate and success. Data on the immediate outcomes of attacks underestimate mortality: more than 73% of apparent ‘escapees’ died within 24 h. Because mortality during this period was independent of toad size, predation was less size selective than suggested by immediate outcomes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 738–751.  相似文献   

13.
Predation can play an important role in the recruitment dynamics of fishes with intensity regulated by behavioral (i.e., prey selectivity) and/or environmental conditions that may be especially important for rare or endangered fishes. We conducted laboratory experiments to quantify prey selection and capture efficiency by three predators employing distinct foraging strategies: pelagic piscivore (walleye Sander vitreus); benthic piscivore (flathead catfish Pylodictis olivaris) and generalist predator (smallmouth bass Micropterus dolomieu) foraging on two size classes of age-0 pallid sturgeon: large (75–100 mm fork length [FL]) and small (40–50 mm FL). Experiments at high (> 70 nephalometric turbidity units [NTU]) and low (< 5 NTU) turbidity for each predator were conducted with high and low densities of pallid sturgeon and contrasting densities of an alternative prey, fathead minnow Pimephales promelas. Predator behaviors (strikes, captures, and consumed prey) were also quantified for each prey type. Walleye and smallmouth bass negatively selected pallid sturgeon (Chesson’s α?=?0.04–0.1) across all treatments, indicating low relative vulnerability to predation. Relative vulnerability to predation by flathead catfish was moderate for small pallid sturgeon (α?=?0.44, neutral selection), but low for large pallid sturgeon (α?=?0.11, negative selection). Turbidity (up to 100 NTU) did not affect pallid sturgeon vulnerability, even at low density of alternative prey. Age-0 pallid sturgeon were easily captured by all predators, but were rarely consumed, suggesting mechanisms other than predator capture efficiency govern sturgeon predation vulnerability.  相似文献   

14.
Physico-chemical regimes of river systems are major determinants of the distributions and relative abundances of macroinvertebrate taxa. Other factors, however, such as biotic interactions, may co-vary with changes in physico-chemistry and concomitant changes in community composition. Thus, direct cause and effect relationships may not always be established from field surveys. Equally, however, laboratory studies may suffer from lack of realism in extrapolation to the field. Here, we use balanced field transplantation experiments to elucidate the role of physico-chemical regime in determining the generally mutually exclusive distributions of two amphipod taxa, Gammarus (two species) and Crangonyx pseudogracilis. Within two river systems in Ireland, the former species dominate stretches of well oxygenated, high-quality water, whereas the latter dominates stretches of poorly oxygenated, low-quality water. G. pulex and G. duebeni celticus did not survive in bioassay tubes in areas dominated by C. pseudogracilis, which itself survived in tubes in such areas. However, both C. pseudogracilis and Gammarus spp. survived equally well in tubes in areas dominated by Gammarus spp. Physico-chemical regime thus limits the movement of Gammarus spp. into C. pseudogracilis areas, but some other factor excludes C. pseudogracilis from Gammarus spp. areas. Since previous laboratory experiments showed high predation rates of Gammarus spp. on C. pseudogracilis, we propose that predation by the former causes exclusion of the latter. Hence, presumed effects of physico-chemical regime on macroinvertebrate presence/abundance may often require experimental field testing and appreciation of alternative explanations. Received: 14 June 1999 / Accepted: 20 January 2000  相似文献   

15.
Animal introductions can often have unexpected and complex consequences for both native and invader species. Freshwater crustaceans such as Gammarus spp. (amphipods) and Mysis relicta (an ‘opossum shrimp’) have frequently come into contact because of deliberate and accidental introductions. However, there remains poor understanding of mechanisms leading to the co-existence and/or exclusion among amphipods and mysids. Here, we examined predatory and interference interactions between native (Gammarus duebeni celticus) and invasive (Gammarus tigrinus and Crangonyx pseudogracilis) amphipods and the native M. relicta in Britain’s largest expanse of freshwater, Lough Neagh. Laboratory mesocosm experiments simulating near-shore/mid-lough benthic habitats showed that both Gammarus species, but not C. pseudogracilis, preyed on M. relicta, which itself preyed on C. pseudogracilis. Further, M. relicta micro-distribution and habitat use changed because of interference from G. d. celticus and to a lesser extent G. tigrinus, with C. pseudogracilis having no such impact. In smaller microcosms, predation of M. relicta adults and juveniles by Gammarus spp. was significant. Although predation of Gammarus spp. by M. relicta was low, adult C. pseudogracilis were killed by M. relicta and its predation of juvenile C. pseudogracilis was high. We discuss the concurrence of these laboratory interactions with known field patterns of co-existence amongst these species.  相似文献   

16.
In a shallow estuarine system near Beaufort, North Carolina, a period of high winter abundance of the mysidsMysidopsis bigelowi andNeomysis americana was associated with a change in zooplankton species composition, from dominance byAcartia tonsa to dominance byCentropages spp. andSaphirella sp. Both mysids feed onA. tonsa at higher rates than the other copepods. Experiments were carried out in 600–1 000 liter enclosures, in which the initial mysid density was manipulated and the effects on the enclosed copepod community were monitored. Mysid predation had a significant effect on copepod densities. The effects of mysid predation on species composition appeared to depend on the relationship between their prey preferences and the dominant copepod species present in the communities. Under conditions favoring dominance byA. tonsa, the preferred prey species, the results suggested that mysid predation may reduce dominance and increase diversity. But when the less preferredCentropages was dominant, mysid predation had no effect on species composition.  相似文献   

17.
Abstract. 1. Antagonistic interactions among invertebrate predators such as intraguild predation and cannibalism have the potential to dampen top‐down impacts on shared prey at lower trophic levels. Two abundant spider predators, the large wolf spider Pardosa littoralis and the small sheet‐web builder Grammonota trivitatta co‐occur on the salt marshes of eastern North America where they both attack planthoppers (Prokelisia spp.), the dominant herbivores on the marsh. Experiments both in the laboratory and field were used to assess the incidence of intraguild predation and cannibalism in these spiders and elucidate how such antagonistic interactions influence planthopper suppression. 2. Functional response experiments showed that with an increase in planthopper prey density, Grammonota captured more prey but not a higher proportion of that offered. Pardosa exhibited the same response when Grammonota were offered as intraguild prey. Both functional responses were type I over the range of prey densities offered. 3. Grammonota is moderately cannibalistic, and the presence of planthopper prey reduced the incidence of cannibalism. 4. Factorial experiments in the laboratory showed that Pardosa but not Grammonota reduced planthopper prey populations when prey density was low. By contrast, at high prey densities, both Pardosa and Grammonota had significant adverse effects on planthopper populations. Moreover, there was an interactive effect such that Grammonota reduced planthopper populations relatively more when Pardosa was absent than when it was present. 5. There was direct evidence for the intraguild predation of Grammonota by Pardosa such that fewer Grammonota survived in the presence of Pardosa than when it was absent. This result occurred whether planthopper prey were abundant or not. 6. Field releases of Grammonota in open plots resulted in significant but small decreases in the density of planthopper prey, both nymphs and adults. 7. Enhancing densities of Pardosa in open plots resulted in Grammonota suppression. The intraguild predation of Grammonota at this enhanced Pardosa density, however, did not preclude Pardosa from significantly reducing planthopper populations. 8. Although there was evidence that Grammonota reduced planthopper populations and that the intraguild predation of Grammonota by Pardosa occurred, the strength of these interactions was relatively weak given the low consumption rate of planthoppers by Grammonota (< 3 day1) and Grammonota by Pardosa (≈ 2 day?1). Thus, weak asymmetric intraguild predation among spiders on the marsh likely dampens but does not eliminate the ability of Pardosa to exert significant top‐down control on planthopper populations.  相似文献   

18.
The aim of the study was to determine the susceptibility to predation of Atlantic sturgeon larvae (Acipenser oxyrinchus) reared under traditional hatchery conditions. Experiments were conducted to determine whether predators would prey on Atlantic sturgeon if alternative prey was available and if the presence of substrate on the tank bottom impacted the number of Atlantic sturgeon consumed. European perch (Perca fluviatilis) was used as the predator, and the alternative prey were three‐spined stickleback (Gasterosteus aculeatus) or gudgeon (Gobio gobio). The predators and alternative prey were obtained from the wild. The mortality of sturgeon (n = 10) and alternative prey (n = 10) caused by four predators was recorded during 15 min trials. Trials with three‐spined stickleback and gudgeon as alternative prey were performed separately. Each experimental trial was repeated five times. The predators consumed significantly more Atlantic sturgeon than alternative prey in both the experimental setups when the bottom of the tank was covered with gravel and stone substrate and when there was no substrate. In trials with three‐spined stickleback the mortality of Atlantic sturgeon in both experimental setups was 94 ± 8.94%, while that of three‐spined stickleback in the setup with substrate was 20 ± 19.23%, and without substrate it was 22 ± 10.00%. European perch also consumed more Atlantic sturgeon than they did gudgeon, and the mean Atlantic sturgeon mortality in the experimental setup with substrate was 94 ± 5.48%, while for gudgeon it was 48 ± 8.37%. In the experimental setup without substrate the predators also consumed substantially more Atlantic sturgeon than gudgeon, with a mean Atlantic sturgeon mortality of 94 ± 8.94%, while for gudgeon it was 76 ± 5.48%. The study indicated that hatchery reared Atlantic sturgeon larvae are susceptible to predation by European perch. Predation could impact the survival of juvenile Atlantic sturgeon in the natural environment, and it could be one of the factors that is impeding the restoration of this species in the Baltic Sea basin.  相似文献   

19.
  1. According to the River Continuum Concept, headwater streams are richer in allochthonous (e.g. terrestrial leaves) than autochthonous (e.g. algae) sources of organic matter for consumers. However, compared to algae, leaf litter is of lower food quality, particularly ω-3 polyunsaturated fatty acids (n-3 PUFA), and would constrain the somatic growth, maintenance, and reproduction of stream invertebrates. It may be thus assumed that shredders, such as Gammarus, receive lower quality diets than grazers, e.g. Ecdyonurus, that typically feed on algae.
  2. The objective of this study was to assess the provision of dietary PUFA from leaf litter and algae to the shredder Gammarus and the grazer Ecdyonurus. Three different diets (algae, terrestrial leaves, and an algae–leaf litter mix) were supplied to these macroinvertebrates in a flume experiment for 2 weeks. To differentiate how diet sources were retained in these consumers, algae were isotopically labelled with 13C.
  3. Both consumers became enriched with 13C in all treatments, demonstrating that both assimilated algae. For Gammarus, n-3 PUFA increased, whereas n-6 PUFA stayed constant. By contrast, the n-3 PUFA content of Ecdyonurus decreased as a consequence of declining algal supply.
  4. Results from compound-specific stable isotope analysis provided evidence that the long-chain n-3 PUFA eicosapentaenoic acid (EPA) in both consumers was more enriched in 13C than the short-chain n-3 PUFA α-linolenic acid, suggesting that EPA was taken up directly from algae and not from heterotrophic biofilms on leaf litter. Both consumers depended on algae as their carbon and EPA source and retained their EPA from high-quality algae.
  相似文献   

20.

Domestic cats Felis catus, as companion animals provided with supplemental food, are not limited by the availability of wild prey and locally occur at extraordinary high densities. There is growing concern about the potential impact of large cat numbers on native prey populations. In the present study, we quantified the minimum number of animals killed in a rural village in Switzerland by asking owners (1) to estimate the predation rate in advance and (2) to record prey animals returned home by their pets. The frequency distribution of the numbers of prey items was markedly skewed: 16% of the cats accounted for 75% of prey, irrespective of sex, age or breed. A large fraction of owners considerably overestimated their cat’s predation, indicating that surveying predation rates by means of a questionnaire alone is not sufficient. The observed average rate of predation within 48 days in spring was 2.29 prey items/cat/month (N = 32 cats); major prey types were rodents (76.1%) and birds (11.1%). The absolute number of prey items taken per area is striking and indicates that cat predation represents an important factor in ecosystems. Its role may be momentous in intensively fragmented urban habitats, where cat densities are especially high. We thus highlight the need to identify the factors determining predation rates of individual cats. Further extended studies, especially in urbanised areas, are needed to quantify the actual impact of cat predation upon the population dynamics of their prey.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号