首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1.1. Alkaline phosphatase (EC 3.1.3.1) from the dinoflagellate Peridinium cinctum, the Lake Kinneret bloom alga, has been partially purified by gel filtration.
  • 2.2. The enzyme could be easily extracted using a distilled water/chloroform mixture suggesting that the alkaline phosphatase of Peridinium is particularly labile.
  • 3.3. The molecular weight of the enzyme was estimated as 158,000 ± 5000. The enzyme showed a broad pH optimum (in the range pH 8.0–8.5), had a Km of 0.45 mM for p-nitrophenylphosphate as substrate and was stable to repeated freeze/thawing cycles.
  • 4.4. The enzyme was strongly activated by Mg2+ whereas Zn2+ (and to a lesser extent Cd2+) was an effective inhibitor of the enzyme. Cu2+ activated the enzyme at low concentrations, although at higher concentrations inhibited the enzyme. This effect of metals on the Peridinium alkaline phosphatase could be environmentally important since underwater hot springs, containing high concentrations of copper, enter the lake.
  相似文献   

2.
  • 1.1. The acid phosphatase (AcPase, EC 3.1.3.2) IV from rat testicular tissue was purified to apparent homogeneity.
  • 2.2. The enzyme displays a native molecular weight of 70 kDa determined on gel permeation chromatography on a Sephadex G-100 column and 68 kDa using linear 5–20% sucrose density gradient centrifugation. The subunit molecular weight on SDS-PAGE analysis is 67 kDa, suggesting that the enzyme is a monomeric protein.
  • 3.3. The enzyme does not bind to Concanavaline A-Sepharose 4B column, indicating that it is not a glycoprotein.
  • 4.4. The rat testis AcPase IV is a metal activated enzyme in which Mg2+ is the metal activating agent with a Ka, = 0.88 × 10−3 M. The Michaelis constant for p-nitrophenylphosphate, in the presence of saturating concentrations of Mg2+ ions, is 0.23 × 10−3 M.
  • 5.5. The enzyme preferentially hydrolizes p-nitrophenylphosphate, phenylphosphate and ATP.
  相似文献   

3.
  • 1.1. An alkaline p-nitrophenylphosphate phosphatase has been purified 440-fold from extracts of Hatobacterium halobium.
  • 2.2. The enzyme has an apparent molecular weight of 24,000.
  • 3.3. A Km value for p-nitrophenylphosphate of 1.12mM has been found under optimal conditions.
  • 4.4. The enzyme is selectively activated and stabilized by Mn2+.
  • 5.5. It requires high salt concentrations for stability and maximum activity.
  • 6.6. It displays an unusual restricted substrate specificity of 25 phosphate esters tested, only phosphotyrosine and casein were hydrolysed besides p-nitrophenylphosphate.
  相似文献   

4.
  • 1.1. Anoxia exposure resulted in a stable modification of the kinetic properties of 6-phosphofructo-1-kinase (PFK) from the anterior byssus retractor muscle (ABRM) of the sea mussel Mytilus edulis L.
  • 2.2. Compared to the aerobic enzyme, the anoxic form of PFK. showed a reduced affinity for both substrates, fructose-6-phosphate (F6P) and ATP, and an increased sensitivity to inhibition by phosphoenolpyruvate.
  • 3.3. To analyze the involvement of protein kinases in the modification of PFK, extracts from aerobic or anoxic muscle were incubated with ATP and Mg2+ plus protein kinase second messengers cyclic 3',5'-adenosine monophosphate (cAMP), cyclic 3',5'-guanosine monophosphate (cGMP) or Ca2+ plus phorbol 12-myristate 13-acetate (PMA).
  • 4.4. Both forms of the enzyme responded to the presence of cAMP with a strong increase in affinity for F6P.
  • 5.5. In response to cGMP affinity of the aerobic enzyme for F6P decreased whereas that of the anoxic enzyme form was not affected (at 0.5 mM ATP) or increased (at 3 mM ATP).
  • 6.6. Incubation with Ca2+ + PMA had only a limited effect on PFK kinetics but appeared to enhance the response to cGMP when the three compounds were given together.
  • 7.7. Treatment of PFK-aerobic with alkaline phosphatase resulted in a strong decrease in enzyme activity and affinity for F6P; subsequent treatment with cAMP reversed the effect on S0.5 F6P.
  • 8.8. The data indicate that PFK activity is altered during the aerobic-anaerobic transition by a change in the phosphorylation state of the enzyme and that cAMP and cGMP act oppositely to regulate PFK activity, and thereby alter glycolytic rate, during this transition.
  相似文献   

5.
  • 1.1. The native rat-kidney cortex Fructose-1,6-BPase is differentially regulated by Mg2+ and Mn2+.
  • 2.2. Mg2+ binding to the enzyme is hyperbolic and large concentrations of the cation are non-inhibitory.
  • 3.3. Mn2+ produces a 10-fold rise in Vmax higher than Mg2+. [Mn2+]0.5 is much larger than [Mg2+]0.5. At elevated [Mn2+] inhibition is observed.
  • 4.4. Mg2+ and Mn2+ produce antagonistic effects on the inhibition of the enzyme by high substrate.
  • 5.5. Fru-2,6-P2 inhibits the enzyme by rising the S0.5 and favouring a sigmoidal kinetics.
  • 6.6. The inhibition by Fru-2,6-P2 is released by Mg2+ and more powerfully by Mn2+ increasing the I0.5.
  相似文献   

6.
  • 1.1. A thermostable orthophosphoric monoester phosphohydrolase (EC 3.1.3.1) from Thermus sp strain Rt41A has been purified 400-fold to give a specific activity of 25 U/mg at 60°C in IM diethanolamine (pH 11.1).
  • 2.2. The enzyme has a Mr of 160,000 and is trimeric.
  • 3.3. The half-life of the enzyme is 5 min at 85°C.
  • 4.4. The enzyme has a wide specificity for a number of phosphate monoesters.
  • 5.5. The Hm of the enzyme is pH dependent, so the pH optimum of the enzyme is affected by the substrate concentration.
  • 6.6. The enzyme is inhibited 50% by 20 mM Ca2+ or Mg2+.
  • 7.7. The Ki for phosphate, EDTA-di sodium salt and arsenate (in 1 M diethanolamine, pH 11.1) is approx 1.2, 1.6 and 4mM respectively.
  • 8.8. Urea (200 mM) is not inhibitory.
  相似文献   

7.
  • 1.1. The purified enzyme hydrolyzes the linear l-lysinamide and the cycle amide of l-lysine—l-α-amino-ϵ-caprolactam.
  • 2.2. The apparent relative molecular mass is 180,000. The enzyme consists of four subunits and the molecular mass of a single subunit was found to be 47,000.
  • 3.3. The coefficient of molecular sedimentation equals 8.3 S, the isoelectric point was determined to be pH 4.3
  • 4.4. The enzyme is not a glycoprotein. p-Mercuribenzoate binds 10 SH-groups of the native enzyme molecule and 20 SH-groups in the presence of 0.7% SDS.
  • 5.5. pH- optimum for the hydrolysis of l-lysine amides was observed to be 7.5–7.7. The enzyme is strictly dependent on Mn2+ and Mg2+.
  • 6.6. The kinetic parameters for the hydrolysis of l-lysinamide where Km = 3.8 mM and kcat = 3000 sec−1 For the hydrolysis of cyclic L-lysinamide Km = 4.8 mM and kcat = 2600 sec.
  相似文献   

8.
  • 1.1. Alkaline p-nitrophenylphosphate phosphatase of Halobacterium halobiium, either purified or in crude extracts, was progressively inactivated by treatment with several metal chelators.
  • 2.2. The activity of treated crude extracts was fully restored in the presence of 25–50 μM Mn2+ or 1 mM Co2+, and partially restored in the presence of 1 mM Cd2+.
  • 3.3. Zn2+ ions, as well as other divalent cations tested, were without effect.
  • 4.4. In the presence of a saturating concentration of Mn2+, but not Co2+ or Cd2+, the activity of the metal-depleted enzyme reached values well over the native control activity.
  • 5.5. Activation of the metal-depleted enzyme by Mn2+ showed cooperative kinetics, whereas activation by Co2+ showed Lineweaver-Burk kinetics.
  • 6.6. The results suggest that the enzyme contains two different types of metal-binding sites: essential site(s), occupied by endogenous Mn2+ ions, and regulatory site(s), that can be occupied by exogenous Mn2+ with an activating effect.
  相似文献   

9.
  • 1.1. Purified ostrich (Struthio camelus) liver fructose-1,6-bisphosphatase exhibited an absolute requirement for Mg2+.
  • 2.2. The enzyme catalyzed the hydrolysis of fructose-1,6-bisphosphate, sedoheptulose-l,7-bisphosphate and ribulose-l,5-bisphosphate.
  • 3.3. S0.5 for substrate was 1.4 μM.
  • 4.4. AMP was a potent non-competitive inhibitor with respect to substrate (Ki of 25 μM).
  • 5.5. Fructose-2,6-bisphosphate was a potent competitive inhibitor of the enzyme (Ki of 4.8 μM).
  相似文献   

10.
  • 1.1. The effect of cadmium administration on female Bufo regularis was studied. The median lethal doses were 22, 18, 15 and 6.2 Cd2+/kg after 24, 48, 72 and 96 hr respectively.
  • 2.2. After a single intramuscular injection of 6.2 Cd2+/kg (representing 96-hr ld50), the results indicated that Cd2+ causes severe physiological abnormalities to this experimental animal.
  • 3.3. The serums alanine aminotransferase (AlAt), aspartate aminotransferase (AAt), alkaline phosphatase (A1P) and lactic dehydrogenase (LDH) were elevated while the calcium serum was not influenced by Cd2+ throughout the experimental period
  • 4.4. On the other hand, phosphorus, total protein and total bilirubin were increased.
  • 5.5. EDTA treatment (0.2 mmole/kg protected female toads from mortality up to 20 mg Cd2+/kg. It overcame the physiological alterations that were caused by the Cd2+ injection.
  • 6.6. This may be due to the fact that Cd2+ is bound to EDTA in a strong complex which is readily excreted via the kidneys.
  相似文献   

11.
  • 1.1. The inhibition kinetics of sheep brain butyrylcholinesterase (BChE) (acylcholine acylhydrolase, EC 3.1.1.8) by Cd2+ and Zn2+ has been studied.
  • 2.2. Ks has been determined as 0.14mM. Cd2+ and Zn2+ were the hyperbolic mixed-type inhibitors of BChE. Ca2+ and Mg2+ had no effect on the enzyme activity in the experimental conditions.
  • 3.3. But when the enzyme was inhibited by 0.1 mM Cd2+ or Zn2+, Ca2+ and Mg2+ reactivated the inhibited form of BChE.
  相似文献   

12.
  • 1.1. Cellular and intracellular localization of catalase and acid phosphomonoesterase in the midgut of Lumbricus terrestris was studied by use of tissue fractionation.
  • 2.2. At least 60–70% of the catalase resides in the chloragocyte cytosol and the remaining 30–40% resides in gut epithelium peroxisomes.
  • 3.3. One of the main functions of the chloragocyte catalase is probably scavenging for H2O2 arising from the interaction between blood heme-protein and oxygen.
  • 4.4. A simple method for the histochemical detection of cytosol catalase is proposed.
  • 5.5. About 10% of the gut acid phosphatase resides in chloragocyte lysosomes. The chloragosomes contain no acid phosphatase.
  相似文献   

13.
  • 1.1. The enzyme fructose-1,6-bisphosphatase was purified from the mantle of the sea mussel Mytilus galloprovincialis Lmk. The purified enzyme showed a single band in SDS-polyacrylamide gel electrophoresis. The mol. wt and subunit mol. wt of the enzyme were 105,000 and 27,000, respectively.
  • 2.2. Divalent cations are essential for the enzyme activity. In the absence of chelating agents, FBPase 1 exhibits hyperbolic kinetics with respect to Mn2+, Zn2+ and Mg2+. The Km for Mg2+ is lower than the physiological concentration of cation in the tissue, whereas its Km for Mn2+ and Zn2+ is greater than the respective in vivo concentrations.
  • 3.3. The joint action of Mg2+ and Zn2+ increases the affinity of the enzyme for the substrate Fru-1,6-P2, though Vmax is reduced.
  • 4.4. Na+ strongly inhibits the enzyme even at very low concentrations. K+ has no effect whatsoever.
  相似文献   

14.
  • 1.1. Subcellular fractions of rat liver were assayed for PLA2 activity.
  • 2.2. The PLA2 assay measures the release of [3 H]oleic acid from phospholipids, using labeled E. coli as substrate.
  • 3.3. Nuclear fractions contained PLA2 activity, which was Ca2+ dependent and could not be explained from mitochondrial, microsomal or plasma membrane contamination.
  • 4.4. The Vmax value of nuclear PLA2 is 0.30 ± 0.04 pmol oleic acid/min/mg protein; its Km value is 0.86±0.12μM, similar to that of mitochondrial PLA2.
  • 5.5. We conclude that rat liver nuclei contain PLA2 activity.
  相似文献   

15.
  • 1.1. The shell side of the mantle of Achatina fulica is several millivolts positive to the blood side in vitro.
  • 2.2. The electrical potential does not depend on Na+, Ca2+, Mg2+, K+ or HCO3 but requires the presence of chloride on the shell side.
  • 3.3. The potential difference and short-circuit current ranged from 3.0 to 30.0 mV and 15.0 to 75 μA/cm2 with averages at 10m V and 50 μA/cm2 respectively.
  • 4.4. The electrical gradient is reduced by 2,4-dinitrophenol, thiocyanate and furosemide but not by ouabain, CO2 or acetozolamide.
  • 5.5. It is suggested that the nature and mechanism of electrogenesis in Achatina parallels that of the Helix mantle.
  相似文献   

16.
  • 1.1. The activation energy of the membrane bound H+-pyrophosphatase is 44.9 k J·mol−1, for the detergent solubilized enzyme is 55.9 kJ·mol−1.
  • 2.2. The Arrhenius plots obtained for pyrophosphatases of Rhodospirillum rubrum show no breaks.
  • 3.3. At 70°C, the membrane-bound pyrophosphatase is more stable in the presence of either Mg2+ or Zn2+ than in their absence.
  • 4.4. At 65°C, an activator effect of Mg2+ or Zn2+ was observed. Nevertheless, at 70°C no activation was obtained.
  • 5.5. The activator effects of Mg2+ or Zn2+ were depended of their concentration.
  相似文献   

17.
  • 1.1. The kinetic and regulatory properties of phenylalanine ammonia-lyase from Citrus sinensis fruit tissue were investigated. The substrate specificity of the enzyme was determined as well as the effects of pH and temperature on the catalytic activity.
  • 2.2. The enzyme exhibits negative homotropic effects between the substrate binding centra.
  • 3.3. Binding of l-phenylalanine to the enzyme is characterized by two Km-values; KmL = 13 μM and KmH = 52 μM; with a Hill-interaction coefficient of 0.75.
  • 4.4. The enzyme is subject to product inhibition by trans-cinnamate, but the effects of allosteric effectors and inhibitors seem to be of much greater importance in the short-term regulation of phenylpropanoid metabolism in Citrus sinensis.
  • 5.5. The enzyme activity was found to be modulated by end-products of diverging metabolic pathways, viz. umbelliferone, scopoletin, naringenin, quercetin, kaempferol, benzoic acid and gallic acid.
  相似文献   

18.
  • 1.1. The properties of ATPase activity were studied with the cells at the early stationary phase of Saccharomycopsis fibuligera.
  • 2.2. Optimal pH for the activity was approximately 7.
  • 3.3. The activity was stimulated by Mg2+.
  • 4.4. The activity was inhibited by NaF, DCCD, oligomycin, NaN3, NaVO3, or PCMB but not inhibited by ouabain.
  相似文献   

19.
  • 1.1. Phospholipase A2 was isolated from Agkistrodon bilineatus venom by Sephadex G-75 and CM-Cellulose column chromatographies.
  • 2.2. The purified phospholipase A2-I gave a single band on disc polyacrylamide gel electrophoresis, isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoresis.
  • 3.3. The enzyme preparation had a molecular weight of 14,000, isoelectric point of pH 8.77 and possessed 123 amino acid residues.
  • 4.4. The purified phospholipase A2 possessed lethal, indirect hemolytic and anticoagulant activities.
  • 5.5. The enzyme hydrolyzed the phospholipids phosphatidyl choline (PC), phosphatidyl ethanolamine (PE), phosphatidyl inositol (PI) and phosphatidyl serine (PS).
  • 6.6. The concentration of mouse diaphragm was inhibited and the contraction of guinea pig left atrium was increased by phospholipase A2-I.
  • 7.7. Phospholipase A2 activity of this preparation was inhibited by ethylenediamine tetraacetic acid, p-bromo phenacyl bromide, n-bromo succinimide or dithiothreitol, but not by diisopropyl fluorophosphate or benzamidine.
  相似文献   

20.
  • 1.1. Two components of Ca2+-Mg2+-ATPase are observed in kidneys of G. mirabilis. The high-affinity component has a K0.5Ca of 0.23μM; the low-affinity activity K0.5Ca is 90–110μM. The high-affinity activity requires Mg2+, displays Michaelis-Menten kinetics, has peak activity at 1.2 μM Ca2+, and is insensitive to ouabain and Na+ azide.
  • 2.2. In subcellular fractions, the high-affinity component segregates with Na+-K+-ATPase and is localized predominantly in BLM. The low-affinity component is broadly distributed among membranous organelles, including brush border, and may be equivalent to alkaline phosphatase.
  • 3.3. Specific activity of the high-affinity Ca2+-Mg2+-ATPase is modestly increased following adaptation of fish to FW, but total renal high-affinity activity is greatest in the hypertrophied kidneys of FW-adapted fish and is least in kidneys of fish adapted to 200% SW.
  • 4.4. High-affinity Ca2+-Mg2+-ATPase may be associated with active Ca2+ transport or with regulation of intracellular Ca2+ concentration of tubular cells.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号