首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.  相似文献   

2.
Controlling the course of the Coronavirus Disease 2019 (COVID-19) pandemic will require widespread deployment of consistent and accurate diagnostic testing of the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Ideally, tests should detect a minimum viral load, be minimally invasive, and provide a rapid and simple readout. Current Food and Drug Administration (FDA)-approved RT-qPCR–based standard diagnostic approaches require invasive nasopharyngeal swabs and involve laboratory-based analyses that can delay results. Recently, a loop-mediated isothermal nucleic acid amplification (LAMP) test that utilizes colorimetric readout received FDA approval. This approach utilizes a pH indicator dye to detect drop in pH from nucleotide hydrolysis during nucleic acid amplification. This method has only been approved for use with RNA extracted from clinical specimens collected via nasopharyngeal swabs. In this study, we developed a quantitative LAMP-based strategy to detect SARS-CoV-2 RNA in saliva. Our detection system distinguished positive from negative sample types using a handheld instrument that monitors optical changes throughout the LAMP reaction. We used this system in a streamlined LAMP testing protocol that could be completed in less than 2 h to directly detect inactivated SARS-CoV-2 in minimally processed saliva that bypassed RNA extraction, with a limit of detection (LOD) of 50 genomes/reaction. The quantitative method correctly detected virus in 100% of contrived clinical samples spiked with inactivated SARS-CoV-2 at either 1× (50 genomes/reaction) or 2× (100 genomes/reaction) of the LOD. Importantly, the quantitative method was based on dynamic optical changes during the reaction and was able to correctly classify samples that were misclassified by endpoint observation of color.  相似文献   

3.
4.
Because loop-mediated isothermal amplification (LAMP) can amplify substantial amounts of DNA under isothermal conditions, its applications for simple genetic testing have attracted considerable attention. A positive LAMP reaction is indicated by the turbidity caused by by-products or by the color change after adding a metallochromic indicator to the reaction solution, but these methods have certain limitations. Leuco crystal violet (LCV), a colorless dye obtained after sodium sulfite treatment of crystal violet (CV), was used as a new colorimetric method for detecting LAMP. LCV is reconverted into CV through contact with double-stranded DNA (dsDNA). Therefore, the positive reaction of LAMP is indicated by color change from colorless to violet. The assay is sensitive enough to detect LAMP products, with a detection limit of 7.1 ng/μl for dsDNA. It is also highly selective to dsDNA, and interference with single-stranded DNA and deoxynucleotide triphosphates (dNTPs) is not observed. LCV facilitates direct colorimetric detection of the main product rather than a by-product of the LAMP reaction; therefore, this method can be used under various reaction conditions such as those with added pyrophosphatase in solution. This colorimetric LAMP detection method using LCV is useful for point-of-care genetic testing given its simplicity.  相似文献   

5.
6.
7.
Surveillance screening at scale to identify people infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prior to extensive transmission is key to bringing an end to the coronavirus disease 2019 (COVID-19) pandemic, even though vaccinations have already begun. Here we describe Corona Detective, a sensitive and rapid molecular test to detect the virus, based on loop-mediated isothermal amplification, which could be applied anywhere at low cost. Critically, the method uses freeze-dried reagents, readily shipped without cold-chain dependence. The reaction detects the viral nucleocapsid gene through a sequence-specific quenched-fluorescence readout, which avoids false positives and also allows multiplex detection with an internal control cellular RNA. Corona Detective can be used in 8-tube strips to be read with a simple open-design fluorescence detector. Other methods to use and produce Corona Detective locally in a variety of formats are possible and already openly shared. Detection specificity is ensured through inclusion of positive and negative control reactions to run in parallel with the diagnostic reactions. A simple user protocol, including sample preparation, and a bioinformatics pipeline to ensure that viral variants will still be detectable with SARS-CoV-2 primer sets complete the method. Through rapid production and distribution of Corona Detective reactions, quite inexpensive at scale, daily or weekly surveillance testing of large populations, without waiting for symptoms to develop, is anticipated, in combination with vaccination campaigns, to finally control this pandemic.  相似文献   

8.

Background

Successful point-of-care testing, namely ensuring the completion of the test and treat cycle in the same encounter, has immense potential to reduce diagnostic and treatment delays, and impact patient outcomes. However, having rapid tests is not enough, as many barriers may prevent their successful implementation in point-of-care testing programs. Qualitative research on diagnostic practices may help identify such barriers across different points of care in health systems.

Methods

In this exploratory qualitative study, we conducted 78 semi-structured interviews and 13 focus group discussions in an urban and rural area of Karnataka, India, with healthcare providers (doctors, nurses, specialists, traditional healers, and informal providers), patients, community health workers, test manufacturers, laboratory technicians, program managers and policy-makers. Participants were purposively sampled to represent settings of hospitals, peripheral labs, clinics, communities and homes, in both the public and private sectors.

Results

In the Indian context, the onus is on the patient to ensure successful point-of-care testing across homes, clinics, labs and hospitals, amidst uncoordinated providers with divergent and often competing practices, in settings lacking material, money and human resources. We identified three overarching themes affecting point-of-care testing: the main theme is ‘relationships’ among providers and between providers and patients, influenced by the cross-cutting theme of ‘infrastructure’. Challenges with both result in ‘modified practices’ often favouring empirical (symptomatic) treatment over treatment guided by testing.

Conclusions

Even if tests can be conducted on the spot and infrastructure challenges have been resolved, relationships among providers and between patients and providers are crucial for successful point-of-care testing. Furthermore, these barriers do not act in isolation, but are interlinked and need to be examined as such. Also, a test alone has only limited power to overcome those difficulties. Test developers, policy-makers, healthcare providers and funders need to use these insights in overcoming barriers to point-of-care testing programs.  相似文献   

9.
10.
As the human genome is decoded and its involvement in diseases is being revealed through postgenome research, increased adoption of genetic testing is expected. Critical to such testing methods is the ease of implementation and comprehensible presentation of amplification results. Loop-mediated isothermal amplification (LAMP) is a simple, rapid, specific and cost-effective nucleic acid amplification method when compared to PCR, nucleic acid sequence-based amplification, self-sustained sequence replication and strand displacement amplification. This protocol details an improved simple visual detection system for the results of the LAMP reaction. In LAMP, a large amount of DNA is synthesized, yielding a large pyrophosphate ion by-product. Pyrophosphate ion combines with divalent metallic ion to form an insoluble salt. Adding manganous ion and calcein, a fluorescent metal indicator, to the reaction solution allows a visualization of substantial alteration of the fluorescence during the one-step amplification reaction, which takes 30-60 min. As the signal recognition is highly sensitive, this system enables visual discrimination of results without costly specialized equipment. This detection method should be helpful in basic research on medicine and pharmacy, environmental hygiene, point-of-care testing and more.  相似文献   

11.
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) emerged in December 2019 and caused a global pandemic of the Coronavirus Disease 2019 (COVID-19). More than 170 million cases have been reported worldwide with mortality rate of 1–3%. The detection of SARS-CoV-2 by molecular testing is limited to acute infections, therefore serological studies provide a better estimation of the virus spread in a population. This study aims to evaluate the seroprevalence of SARS-CoV-2 in the major city of Riyadh, Saudi Arabia during the sharp increase of the pandemic, in June 2020. Serum samples from non-COVID patients (n = 432), patients visiting hospitals for other complications and confirmed negative for COVID-19, and healthy blood donors (n = 350) were collected and evaluated using an in-house enzyme-linked immunosorbent assay (ELISA). The overall percentage of positive samples was 7.80% in the combined two populations (n = 782). The seroprevalence was lower in the blood donors (6%) than non-COVID-19 patients (9.25%), p = 0.0004. This seroprevalence rate is higher than the documented cases, indicating asymptomatic or mild unreported COVID-19 infections in these two populations. This warrants further national sero-surveys and highlights the importance of real-time serological surveillance during pandemics.  相似文献   

12.
The filarial parasite Loa loa, the causative agent of loiasis, is endemic in Central and Western Africa infecting 3–13 million people. L. loa has been associated with fatal encephalopathic reactions in high Loa-infected individuals receiving ivermectin during mass drug administration programs for the control of onchocerciasis and lymphatic filariasis. In endemic areas, the only diagnostic method routinely used is the microscopic examination of mid-day blood samples by thick blood film. Improved methods for detection of L. loa are needed in endemic regions with limited resources, where delayed diagnosis results in high mortality. We have investigated the use of a loop-mediated isothermal amplification (LAMP) assay to facilitate rapid, inexpensive, molecular diagnosis of loiasis. Primers for LAMP were designed from a species-specific repetitive DNA sequence from L. loa retrieved from GenBank. Genomic DNA of a L. loa adult worm was used to optimize the LAMP conditions using a thermocycler or a conventional heating block. Amplification of DNA in the LAMP mixture was visually inspected for turbidity as well as addition of fluorescent dye. LAMP specificity was evaluated using DNA from other parasites; sensitivity was evaluated using DNA from L. loa 10-fold serially diluted. Simulated human blood samples spiked with DNA from L. loa were also tested for sensitivity. Upon addition of fluorescent dye, all positive reactions turned green while the negative controls remained orange under ambient light. After electrophoresis on agarose gels, a ladder of multiple bands of different sizes could be observed in positive samples. The detection limit of the assay was found to be as little as 0.5 ag of L. loa genomic DNA when using a heating block. We have designed, for the first time, a highly sensitive LAMP assay for the detection of L. loa which is potentially adaptable for field diagnosis and disease surveillance in loiasis-endemic areas.  相似文献   

13.
14.

Background

There is an urgent need to develop rapid and accurate point-of-care (POC) technologies for acute scrub typhus diagnosis in low-resource, primary health care settings to guide clinical therapy.

Methodology/Principal Findings

In this study we present the clinical evaluation of loop-mediated isothermal PCR assay (LAMP) in the context of a prospective fever study, including 161 patients from scrub typhus-endemic Chiang Rai, northern Thailand.A robust reference comparator set comprising following ‘scrub typhus infection criteria’ (STIC) was used: a) positive cell culture isolate and/or b) an admission IgM titer ≥1∶12,800 using the ‘gold standard’ indirect immunofluorescence assay (IFA) and/or c) a 4-fold rising IFA IgM titer and/or d) a positive result in at least two out of three PCR assays.Compared to the STIC criteria, all PCR assays (including LAMP) demonstrated high specificity ranging from 96–99%, with sensitivities varying from 40% to 56%, similar to the antibody based rapid test, which had a sensitivity of 47% and a specificity of 95%.

Conclusions/Significance

The diagnostic accuracy of the LAMP assay was similar to realtime and nested conventional PCR assays, but superior to the antibody-based rapid test in the early disease course. The combination of DNA- and antibody-based detection methods increased sensitivity with minimal reduction of specificity, and expanded the timeframe of adequate diagnostic coverage throughout the acute phase of scrub typhus.  相似文献   

15.
A loop-mediated isothermal amplification (LAMP) assay for simple detection of Bordetella holmesii was developed. This assay discriminates between B. holmesii and other Bordetella species and successfully detect B. holmesii DNA in nasopharyngeal swab samples from subjects with suspected pertussis. The LAMP assay results were in complete agreement with the results of previously published real-time PCR assay, indicating that the former is a powerful tool for the accurate diagnosis and surveillance of B. holmesii.  相似文献   

16.
17.
18.
Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method performed under isothermal conditions with high specificity and efficiency. We developed a diagnostic method based on LAMP for detection of Actinobacillus pleuropneumoniae . Using six specific primers targeting the apxIVA gene, the LAMP assay rapidly amplified the target gene within 30 min, requiring only a laboratory water bath for the reaction to occur. The resulting amplificon was visualized by adding SYBR Green I to the mixture. The results obtained from testing 15 A. pleuropneumoniae reference strains and other seven bacterial species strains showed that the LAMP was as specific as and 10 times more sensitive than nested PCR. Sixty-five tonsil samples were collected from 65 healthy pigs. All the samples were negative for A. pleuropneumoniae by immunomagnetic separation-based (IMS) bacterial isolation, nested PCR and LAMP, respectively. Meanwhile, 115 tonsil samples were also collected from 115 pigs with apparent respiratory problems. Twenty-two were positive by IMS bacterial isolation. All the samples that were positive by IMS bacterial isolation were also positive by nested PCR and LAMP. The LAMP assay demonstrated exceptionally higher sensitivity than nested PCR by picking up 14 additional positive cases (χ2 test, P <0.0001); we concluded that LAMP was a highly sensitive and reliable method for detection of A. pleuropneumoniae infection.  相似文献   

19.
20.
A loop-mediated isothermal amplification (LAMP) assay allows rapid diagnosis of Toxoplasma gondii infection. In the present study, the LAMP assay was evaluated using blood from both naturally and experimentally infected pigs. The sensitivity of the LAMP assay was compared with that of Q-PCR. Both assays detected T. gondii in the blood of experimentally infected pigs, with 100% agreement. In infected blood samples, the parasite was detected as early as 2 days post-infection and reached a peak in 3-5 days. In 216 field serum samples, the detection rates of LAMP and Q-PCR assays were 6.9% and 7.8%, respectively. This result indicates that the sensitivity of the LAMP assay was slightly lower than that of the Q-PCR assay. However, the LAMP may be an attractive diagnostic method in conditions where sophisticated and expensive equipment is unavailable. This assay could be a powerful supplement to current diagnostic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号