首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lee WY  Zhou X  Or PM  Kwan YW  Yeung JH 《Phytomedicine》2012,19(2):169-176
This study investigated the effects of Danshen and its active ingredients on the protein expression and enzymatic activity of CYP1A2 in primary rat hepatocytes. The ethanolic extract of Danshen roots (containing mainly tanshinones) inhibited CYP1A2-catalyzed phenacetin O-deethylation (IC50 = 24.6 μg/ml) in primary rat hepatocytes while the water extract containing mainly salvianolic acid B and danshenshu had no effect. Individual tanshinones such as cryptotanshinone, dihydrotanshinone, tanshinone IIA inhibited the CYP1A2-mediated metabolism with IC50 values at 12.9, 17.4 and 31.9 μM, respectively. After 4-day treatment of the rat hepatocytes, the ethanolic extract of Danshen and tanshinone I increased rat CYP1A2 activity by 6.8- and 5.2-fold, respectively, with a concomitant up-regulation of CYP1A2 protein level by 13.5- and 6.5-fold, respectively. CYP1A2 induction correlated with the up-regulation of mRNA level of aryl hydrocarbon receptor (AhR), which suggested a positive feedback mechanism of tanshinone I-mediated CYP1A2 induction. A formulated Danshen pill (containing mainly danshensu and salvianolic acid B and the tanshinones) up-regulated CYP1A2 protein expression and enzyme activity, but danshensu and salvianolic acid B, when used individually, did not affect CYP1A2 activity. This study was the first report on the Janus action of the tanshinones on rat CYP1A2 activity.  相似文献   

2.
Long-term culture of hepatocytes has been challenged by the loss of differentiated functions. In particular, there is a rapid decline in cytochrome P450 (CYP). In this study, we cocultured rat hepatocytes with 3T3 fibroblasts for 10 days, and examined hepatocyte viability, morphology, and expression of CYP3A. Terfenadine was incubated with the cultures, and its biotransformation was quantitatively analyzed by HPLC. Terfenadine is metabolized by two major pathways:C-hydroxylation to an alcohol metabolite which is further oxidized to a carboxylic acid, andN-dealkylation to azacyclonol. In rat liver, only theN-dealkylation pathway appears to be mediated by CYP3A since anti-rat CYP3A antibody inhibited azacyclonol but not alcohol metabolite formation in incubations of terfenadine with liver microsomes. Freshly isolated rat hepatocytes were seeded on top of confluent 3T3 cells. Cultures were maintained in Williams' E medium supplemented with 10% fetal bovine serum and either 0.1 mol/L or 5 mol/L dexamethasone. In pure hepatocyte cultures, viability, as determined by lactate dehydrogenase (LDH) activity, decreased steadily to less than 30% of initial levels by day 10. In cocultures, LDH activity remained high and was 70% of initial levels on day 10. The half-life of terfenadine disappearance was optimally maintained in cocultures treated with 5 mol/L dexamethasone, and was associated with the increased formation of azacyclonol. On day 5, nearly 50% of added 5 mol/L terfenadine was converted to azacyclonol within 6 h, whereas the conversion was only 4% on day 1. Western and RNA-slot blot analyses confirmed that treatment with 5 mol/L dexamethasone induced CYP3A mRNA expression and CYP3A protein expression. This coculture system could offer a useful approach in the study of drugs and xenobiotics metabolized by CYP3A.Abbreviations BSA bovine serum albumin - CYP cytochrome P450 - DMSO dimethyl sulfoxide - LDH lactate dehydrogenase - PCN pregnenolone-16-carbonitrile - SDS sodium dodecyl sulfate - SSC saline sodium citrate  相似文献   

3.
Cytochrome P450 1A2 (CYP1A2) is constitutively expressed in the mouse liver, but the constitutive expression progressively declines to an undetectable level in isolated hepatocytes. In this study, CYP1A2 was induced in hepatocytes exposed to the histone deacetylase inhibitors trichostatin A (TSA) and sodium butyrate (SB), but only well after constitutive CYP1A2 expression was silenced. However, cotreatment with the arylhydrocarbon receptor (AhR) ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and either TSA or SB reduced the induction of CYP1A2 with the same time course as TSA or SB increased its induction. These results suggest that histone modification is involved in CYP1A2 regulation in hepatocytes through pathways that are independent of AhR.  相似文献   

4.
Selenium, an essential biological trace element present in both prokaryotic and eukaryotic cells, exerts its regulatory effect in a variety of cellular events, including cell growth, survival, and death. Selenium compunds have been shown in different cell lines to inhibit apoptosis by several mechanisms. Serine/threonine phosphatases (STPs) are potentially important in selenite-induced apoptosis because of their role in regulation of diverse set of cellular processes. In this study, the regulatory role of STPs in selenite-induced apoptosis has been implied by the use of two specific inhibitors: ocadaic acid and calyculin A. Our results show a decrease in cell density in HepG2 cells under selenite treatment. Resulting specific enzyme activities showed a concentration-dependent increase in all three phosphatase activities after 24 h in cells treated with 5 μM selenite and these activities decreased at 48 and 72 h. However, in cells treated with 10μM selenite, PP2A and PP2B decreased at 48 h, whereas PP2C activity did not change at this dose. In cells treated with 25μM, there was not a significant change in PP2C activity. These data suggest that the most specific response to selenite treatment was in PP2A and PP2B activities in a dose-dependent manner. Our results with OA and Cal-A further support the view that PP1 and PP2A might act as negative regulators of growth. With these data, we have first demonstrated the role of serine/threonine protein phosphatases in the signaling pathway of selenite-induced apoptosis and resulting cytotoxicity  相似文献   

5.
Benzimidazoles compounds like omeprazole (OME) and thiabendazole (TBZ) mediate CYP1A1 induction differently from classical aryl hydrocarbon receptor (AhR) ligands, 3-methylcholanthrene (3-MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To clarify the involvement of an intracellular signal pathway in CYP1A1 induction by OME and TBZ, the TBZ, OME and 3-MC signal-transducing pathways were compared by using specific protein tyrosine kinase inhibitors in primary culture of rat hepatocytes. The effect of OME and TBZ (75-250 microM) on cytochrome P450 1A1 (CYP1A1) expression was therefore studied in primary cultures of rat hepatocytes after 24 h, 48 h and 72 h of exposure. Both compounds provoked a dose- and time-dependent increase in CYP1A1 (EROD activity, protein and mRNA levels), but OME was less effective at all the concentrations and times tested. The mechanism of benzimidazole-mediated induction of CYP1A1 was investigated by comparison with 3-MC, a prototypical AhR ligand. As expected, OME and TBZ were unable to displace [(3)H]-TCDD from its binding sites to the AhR in competitive binding studies. Moreover, classic tyrosine kinase inhibitor herbimycin A (HA) inhibited the two benzimidazoles-mediated CYP1A1 inductions, but only partially inhibited the 3-MC-mediated one. Another two tyrosine kinase inhibitors, Lavendustin A (LA) and genistein (GEN), had no effect on CYP1A1 induction by benzimidazoles and 3-MC. These results are consistent with the implication of a tyrosine kinase, most probably the Src tyrosine kinase, in the mechanism of CYP1A1 induction in rat hepatocytes.  相似文献   

6.
7.
8.
In detached roots of etiolated maize (Zea mays L.) seedlings, neurotransmitters, adrenalin and noradrenalin, stimulated exudation by increasing the root pressure due to activation of its metabolic component. In these treatments, the osmotic pressure of the exudate was somewhat reduced. In contrast, a temperature coefficient Q10 was increased, which as in accordance with the increase of the absolute value of the metabolic component and its proportion in the total root pressure. To obtain some information about transmitting the signals induced by adrenalin and noradrenalin action on water transport, we used two inhibitors of the most important and universal elements of signaling pathways, staurosporine (the inhibitor of protein kinases) and okadaic acid (the inhibitor of protein phosphatases). In control roots, staurosporine markedly slowed and okadaic acid accelerated exudation. In the presence of staurosporine in the incubation medium, a stimulatory effect of both neurotransmitters was completely abolished and the rate of exudation became even below the control value. Okadaic acid exerted an opposite action: it augmented markedly stimulatory effects of both neurotrasmitters. The data obtained indicated the involvement of protein kinases and protein phosphatases in transduction of signals induced by adrenalin and noradrenalin, which stimulated root water-pumping activity.  相似文献   

9.
This study reports that dexamethasone (DEX) significantly induces CYP3A11, CYP3A13 and CYP3A25 mRNA expression in male and female 4 days, 3 weeks and 18 weeks old C57BL/6J mice. Furthermore, CYP3A activity, as measured by erythromycin-N-demethylation, is also significantly increased. PXR, RXRalpha and CAR are known to be involved in the induction of CYP3As. Here we report nuclear receptors PXR and RXRalpha but not CAR demonstrate gender- and age-dependent expression. Also, treatment of C57BL/6J mice with DEX induces PXR but not RXRalpha or CAR. In summary, we demonstrate DEX is not only able to up-regulate CYP3A expression and activity, but also the nuclear receptor PXR through which it may exert this effect. Furthermore, the gender- and age-dependent pattern of basal PXR and RXRalpha expression is similar to the 3 CYP3As analysed.  相似文献   

10.
11.
Cytochrome P450 2C9 (CYP2C9) expression is regulated by multiple nuclear receptors including the constitutive androstane receptor (CAR) and pregnane X receptor (PXR). We compared coregulation of CYP2C9 with CYP2B6 and CYP3A4, prototypical target genes for human CAR and PXR using human hepatocyte cultures treated for three days with the PXR activators clotrimazole, rifampin, and ritonavir; the CAR/PXR activator phenobarbital (PB); and the CAR‐selective agonists CITCO, (6‐(4‐chlorophenyl)imidazo[2,1‐β][1,3]thiazole‐5‐carbaldehyde‐O‐(3,4‐dichlorobenzyl)oxime) and phenytoin. Clotrimazole, rifampin, ritonavir, phenytoin, and phenobarbital induced CYP2C9 consistent with previous findings for CYP3A4. We observed EC50 values of 519 μM (phenobarbital), 11 μM (phenytoin), and 0.75 μM (rifampin), similar to those for CYP3A4 induction. Avasimibe, a potent PXR activator, produced nearly identical concentration‐dependent CYP2C9 and CYP3A4 activity profiles and EC50 values. In 17 donors, rifampin increased mean basal CYP2C9 activity from 59 ± 43 to 143 ± 68 pmol/mg protein/min; fold induction ranged from 1.4‐ to 6.4‐fold. Enzyme activity and mRNA measurements after rifampin, CITCO and PB treatment demonstrated potency and efficacy consistent with CYP2C9 regulation being analogous to CYP3A4 rather than CYP2B6. We demonstrate that hepatic CYP2C9 is differentially regulated by agonists of CAR and PXR, and despite sharing common regulatory mechanisms with CYP3A4 and CYP2B6; this enzyme exhibits an induction profile more closely aligned with that of CYP3A4. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:43–58, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20264  相似文献   

12.
In primary cultures of rat hepatocytes, exposure to arsenite causes a major decrease in dexamethasone (DEX)-mediated induction of CYP3A23 hemoprotein, with a minor decrease in CYP3A23 mRNA. Here we show that addition of heme did not prevent the arsenite-mediated decreases in CYP3A23 protein, and arsenite did not decrease intracellular glutathione levels, indicating that heme and glutathione were not limiting for formation of holoCYP3A23. We also investigated whether arsenite decreases CYP3A23 protein by increasing CYP3A23 degradation by the calpain pathway. The calpain inhibitor, calpeptin, caused greater than a 90% inhibition of calpain-mediated proteolysis, but had no effect on DEX-mediated induction of CYP3A23 protein following 24h treatments. However, calpeptin enhanced the effect of arsenite to decrease induction of CYP3A23 protein. In addition, in short-term studies, calpeptin appeared to be a suicidal inhibitor of CYP3A-catalyzed enzyme activity. Our findings suggest that CYP3A23 protein is not degraded by calpain-mediated proteolysis, even in the presence of arsenite.  相似文献   

13.
Potential mechanisms were investigated whereby CYP2B18, a cytochrome P450 gene exhibiting high constitutive expression but only low levels of phenobarbital-inducibility in the guinea pig liver, may be differentially regulated versus the highly inducible rat CYP2B2 gene. To comparatively assess potential regulatory sequences associated with CYP2B18, a guinea pig genomic library was screened enabling isolation of the CYP2B18 gene. The genomic screening process resulted in the identification of at least four closely-related CYP2B18 genes, designated here as CYP2B18A-D. Of these isolates, CYP2B18A exhibited sequence identical to that of the CYP2B18 cDNA. Further, the deduced amino acid sequence of the CYP2B18 cDNA was identical to that of N-terminal and internally-derived peptide sequences obtained in this investigation from CYP2B18 protein isolated from guinea pig liver. Genomic structural sequences were derived for CYP2B18A, together with the respective 5'-upstream and intronic regions of the gene. Comparison of the CYP2B18A and CYP2B2 gene sequences revealed the lack of repetitive LINE gene sequences in CYP2B18A, putative silencing elements that effect neighboring genes, although these sequences were present in both 5'-upstream and 3'-downstream regions of CYP2B2. We determined that the phenobarbital-responsive enhancer module was absent from the 5'-upstream region as well as the intronic regions of CYP2B18A gene. We hypothesize that the compromised phenobarbital inducibility of CYP2B18A stems from its lack of a functional phenobarbital responsive enhancer module.  相似文献   

14.
Two optimized forms of green fluorescence proteins (GFP), enhanced GFP (EGFP) and humanized Renilla GFP (hrGFP), were used to track expression of cytochrome P450 2B1 (CYP2B1), an endoplasmic reticulum membrane-bound protein. In transiently expressing HEK293 cells we show that CYP2B1-GFP fusion proteins are stable and functional, whereas the vice-versa-arranged GFP-CYP2B1 fusions are not. The CYP2B1-hrGFP fusion protein is characterized by reduction in mean fluorescence intensity (MFI) to less than 20% of that of the hrGFP protein alone, accompanied by a 50% loss of CYP2B1 activity. Exchanging the linker for an alpha-helical peptide structure between CYP2B1 and hrGFP does not improve fusion protein activity. Insertion of a short linker (five amino acids) increases reporter protein fluorescence intensity twofold without improving CYP2B1 activity. Introduction of the foot and mouth disease virus 2A sequence providing cotranslational cleavage led to an unstable hrGFP-2A protein, whereas the corresponding EGFP-2A protein was stable and yielded an MFI superior to those of all other fusion constructs tested. CYP2B1 activity of the EGFP-2A-CYP2B1 protein was in the range of that of the unmodified CYP2B1. These data indicate that the protein arrangement EGFP-2A-CYP2B1 is superior to others, since it is most active and visible, which is essential for an effective tracking of the CYP2B1 enzyme.  相似文献   

15.
Compared to other species, little information is available on the xenobiotic-induced regulation of cytochrome P450 enzymes in the beagle dog. Dogs are widely used in the pharmaceutical industry for many study types, including those that will impact decisions on compound progression. The purpose of this study was (1) to determine the temporal kinetics of drug-induced changes in canine CYP1A, CYP2B, and CYP3A mRNA and enzymatic activity, and (2) to characterize concentration-response relationships for CYP1A2, CYP2B11, and CYP3A12 using primary cultures of canine hepatocytes treated with beta-naphthoflavone (BNF), phenobarbital (PB), and rifampin (RIF), respectively. CYP1A1 and CYP1A2 mRNA exhibited maximal expression (12,700-fold and 206-fold, respectively) after 36 h of treatment with BNF. PB treatment, but not RIF treatment, caused maximal induction of CYP2B11 mRNA (149-fold) after 48 h of treatment. CYP3A12 and CYP3A26 mRNA levels were increased maximally after 72 h of treatment with PB and RIF (CYP3A12, 35-fold and 18-fold, and CYP3A26, 72-fold and 22-fold with PB and RIF treatment, respectively). Concentration-response relationships for BNF induced 7-ethoxyresorufin O-dealkylation (EROD) (EC(50) = 7.8 +/- 4.2 microM), PB induced 7-benzyloxyresorufin O-dealkylation (BROD) (EC(50) = 123 +/- 30 microM), and PB and RIF induced testosterone 6beta-hydroxylation (EC(50) = 132 +/- 28 microM and 0.98 +/- 0.16 microM) resembled the relationship for human CYP induction compared to that of rodent. Interestingly, RIF had no effect on CYP2B11 expression, which represents a species difference overlooked in previous investigations. Overall, the induction of dog CYP1A, CYP2B, and CYP3A exhibits characteristics that are intermediate to those of rodent and human.  相似文献   

16.
Primary hepatocytes (PHs) are considered the ‘gold standard’ in drug screening owing to their ability to express many drug-metabolizing enzymes and transporters. Culturing hepatocytes and maintaining their fate in vitro is a major issue since last decade. The main problem with in vitro hepatocytes culture is that they rapidly lose their hepatic morphology and liver-specific functions in culture. Herein, we isolated rat PHs, and cultured them in monolayers (2-D) and spheroids (3-D). The 2-D-cultured PHs exhibited elongated morphology, whereas the 3-D-cultured PHs exhibited spheroid morphology with gradual diameter decrease until 7 days. After 7 days of in vitro culture, PHs were analyzed for the expression of hepatic (Alb, Tf, and Afp) and apoptotic markers (Bax and Bcl2), and co-expression of CYP3A1 and Abumin after 2 and 7 days. Furthermore, in both cultures, PHs were induced with 3-methylcholanthrene (3-MC, Cyp1a-specific inducer) and dexamethasone (Cyp3a-specific inducer) for 48 and 72?h, respectively. The mRNA levels of Cyp1a and Cyp3a were analyzed in induced (3-MC, dexamethasone) and non-induced PHs. After 7 days of in vitro culture, PHs exhibited dramatic downregulation of hepatic marker expression in both cultures. Furthermore, apoptotic marker expression was higher in the 2-D-cultured PHs than 3-D-cultured PHs. The mRNA levels of Cyp1a and Cyp3a indicated higher RNA content in the 2-D-cultured PHs after 48?h of induction. Therefore, we concluded that there was no significant difference between the culture systems, and further studies are required to identify the essential components for in vitro PH culture rather than culture systems.  相似文献   

17.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are signal-transducing molecules that regulate the activities of a variety of proteins. In the present investigation, we have compared the effects of superoxide (O2-), nitric oxide (NO), and hydrogen peroxide (H2O2) on the activities of three highly homologous serine/threonine phosphatases, protein phosphatase type 1 (PP1), protein phosphatase type 2A (PP2A), and calcineurin (protein phosphatase type 2B). Although superoxide, generated from xanthine/xanthine oxidase or paraquat, and NO, generated from (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide or sodium nitroprusside, potently inhibited the phosphatase activity of calcineurin in neuroblastoma cell lysates, they had relatively little effect on the activities of PP1 or PP2A. In contrast, H2O2 inhibited the activities of all three phosphatases in lysates but was not a potent inhibitor for any of the enzymes. Calcineurin inactivated by O2-, NO, and H2O2 could be partially reactivated by the reducing agent ascorbate or by the thiol-specific reagent dithiothreitol (DTT). Maximal reactivation was achieved by the addition of both reagents, which suggests that ROS and RNS inhibit calcineurin by oxidizing both a catalytic metal(s) and a critical thiol(s). Reactivation of H2O2-treated PP1 also required the combination of both ascorbate and DTT, whereas PP2A required only DTT for reactivation. These results suggest that, despite their highly homologous structures, calcineurin is the only major Ser/Thr phosphatase that is a sensitive target for inhibition by superoxide and nitric oxide and that none of the phosphatases are sensitive to inhibition by hydrogen peroxide.  相似文献   

18.
19.
To explore the enantioselectivity of ligand interaction with the putative phenobarbital receptor, the pharmacodynamics of cytochrome P450 2B (CYP2B) induction by racemic 5-ethyl-5-phen-ylhydantoin and its two enantiomers were investigated in the male F344/NCr rat and in cultured adult male rat hepatocytes. Steady-state serum drug concentrations, measured following 14 days of administration of the compounds in the diet (0-1320 ppm, n = 3 rats per group), were used as an approximation of intrahepatocellular drug concentration. The serum xenobiotic concentrations associated with half-maximal hepatic CYP2B induction were 5-10 μM, based on measurement of pentoxy- or benzyloxyresorufin O-dealkylation activities, or immunoreactive CYP2B1 protein. The corresponding potency values in the hepatocyte culture experiments were 8-12 μM, based on measurement of total cellular RNA coding for CYP2B1. In both the in vivo and the hepatocyte culture experiments, the potencies for CYP2B induction were essentially equivalent for the racemate and the individual enantiomers of 5-ethyl-5-phenylhydantion. In the case of this compound, there would appear to be no enantioselectivity for CYP2B induction. This finding may be interpreted as evidence against receptor mediation in the induction of CYP2B activity, although it is also possible that a receptor is involved that does not exhibit enantioselectivity.  相似文献   

20.
Current cyclosporin (CsA) and tacrolimus (FK506) monitoring methods are based on blood concentrations determination, but the optimal sampling times are not clearly defined. An alternative pharmacodynamic approach has recently been introduced, based on assaying lymphocytes activity of calcineurin (PP2B), a phosphatase that is partially inhibited by CsA and FK506. However, the princeps method uses large amounts of radioactive [32P]substrate, raising a number of safety issues. Here we describe an alternative method for PP2B activity determination, based on HPLC coupled with spectrophotometric detection. A 19-amino-acid peptide is phosphorylated by a protein kinase, and further dephosphorylated by lymphocyte PP2B in the presence of okadaic acid. The two peptides are separated by using reverse-phase chromatography with a detection wavelength of 205 nm. After lymphocyte isolation by density-gradient centrifugation, PP2B activity is derived from the dephosphorylated peptide concentration measured during the first 6 min of the enzymatic reaction. This technique gives reproducible results and good analytical sensitivity with 10(6) lymphocytes. With an average isolation rate of 59.6%, only 7 ml of blood is required, making the method suitable for lymphopenic patients. Moreover, PP2B activity is stable in blood samples kept for 24h at room temperature and in isolated lymphocytes stored for 48 h at -20 degrees C. We validated the method by comparing median PP2B activity in 10 healthy volunteers (285.0+/-46.5 pmol/min/10(6)lymphocytes) and in 10 liver transplant patients (147.8+/-71.0 pmol/min/10(6)lymphocytes) (p<0.001). The relation between calcineurin activity and tacrolimus blood concentrations was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号