首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
David G. Frey 《Hydrobiologia》1993,262(3):145-188
Whereas previously all populations of Pleuroxus (now P.) known from the subantarctic islands and southernmost South America were considered to belong to a subspecies of P. aduncus (described from France), now there are five distinct species, only one of which resembles P. aduncus to any significant extent, but even it is a good species. Thus, the taxa are all distinctly different, and none of them could possibly be considered an infraspecies of P. aduncus sens. str. P. macquariensis from Macquarie Island and P. paroplesius and P. varidentatus from South America are new. Of the five species, P. varidentatus resembles P. aduncus most closely, but is separated from it by a number of significant characters. P. wittsteini is presently known from five islands in the south Indian Ocean, but there is considerable uncertainty as to whether all these populations really are the same taxon, because they differ somewhat in the shape of the labrum and in the intensity of sculpturing of the carapace and head. P. scopuliferus from South America is the most distinctive species of the group, having 9 gnathobasic filter setae on trunklimb III instead of the usual 8, a weak ridge on the shell, and a recurved rostrum extending beyond the tip of the labrum. No species of Pleuroxus (or of P., another subgenus of animals formerly assigned simply to Pleuroxus are known from the islands in the Scotia Arc between South America and Antarctica. The patterns of distribution cannot be explained by an on-going passive dispersal of resting eggs. No populations of species on the subantarctic islands are known from any of the southern land masses. Conditions on these islands intuitively must have been more severe during the glacial ages than during the present interglacial, suggesting that any anomopods present were eliminated during the severe glacial periods. Yet, the presence of isolated populations of endemic species on some islands and the complete lack of Pleuroxus on others (e.g. those in the Scotia Arc) argues that conditions, although more severe, still provided opportunities for the maintenance of active populations. Moreover, the morphological differences between populations of P. wittsteini on islands from a few hundred to several thousand kilometers apart likewise argue for genetic isolation over a very long period of time. Deceased  相似文献   

2.
Poa annua is a cosmopolitan weed in turf grass. It is a widespread non-native species in the subantarctic and also occurs in the Antarctic Peninsula. It has highly variable morphology, longevity and reproductive capacity across both its invaded and native range. Little is known about the ecology of P. annua in the subantarctic, particularly its longevity, morphological variation across small spatial scales and competitive ability. We monitored individual P. annua plants on subantarctic Macquarie Island to assess their longevity; quantified morphology and biomass allocation across environmental gradients; and assessed community diversity indices in areas of varying P. annua density. We show that P. annua plants on Macquarie Island are perennial, and their morphology varies with elevation, animal disturbance and soil properties. At low altitude, coastal sites with high animal disturbance and deep, sandy soils, P. annua plants are larger and native plant diversity is low. Conversely, at high altitude sites P. annua plants are smaller and the diversity of native species is not reduced. This new information informs why P. annua is the most successful plant invader in the subantarctic and quantifies some key characteristics enabling an invasive species to function well beyond its natural range. Community ecology theory can also explain patterns in the ecology of P. annua on Macquarie Island.  相似文献   

3.
Gene flow is often considered to be one of the main factors that constrains local adaptation in a heterogeneous environment. However, gene flow may also lead to the evolution of phenotypic plasticity. We investigated the effect of gene flow on local adaptation and phenotypic plasticity in development time in island populations of the common frog Rana temporaria which breed in pools that differ in drying regimes. This was done by investigating associations between traits (measured in a common garden experiment) and selective factors (pool drying regimes and gene flow from other populations inhabiting different environments) by regression analyses and by comparing pairwise FST values (obtained from microsatellite analyses) with pairwise QST values. We found that the degree of phenotypic plasticity was positively correlated with gene flow from other populations inhabiting different environments (among‐island environmental heterogeneity), as well as with local environmental heterogeneity within each population. Furthermore, local adaptation, manifested in the correlation between development time and the degree of pool drying on the islands, appears to have been caused by divergent selection pressures. The local adaptation in development time and phenotypic plasticity is quite remarkable, because the populations are young (less than 300 generations) and substantial gene flow is present among islands.  相似文献   

4.
Abstract Geographic divergence in phenotypic traits between long‐isolated populations likely has a genetic basis, but can phenotypic plasticity generate such divergence rapidly in the initial stages of isolation? Australian tiger snakes (Notechis scutatus, Elapidae) provide a classic model system for the evolution of body size: mean adult sizes are relatively invariant in mainland populations, but many offshore islands have dwarf or giant populations. Previous work has shown a genetic basis to this divergence in long‐isolated islands (>10 000 years), but what of the initial stages of this process? Human translocation of mainland snakes to Carnac Island 90 years ago gives us a unique opportunity to assess the proximate reasons for the giant size of Carnac Island animals compared with mainland conspecifics. Our data suggest a major role for phenotypic plasticity. Feeding trials on captive snakes from both island and mainland populations showed a strong link between food intake and growth rates, similar in the two populations. Snakes given abundant food grew much larger than we have ever recorded in the wild, demonstrating that observed mean body sizes are driven by food availability rather than genetic limits to growth. In combination with earlier work showing genetic divergence in growth rates in snakes from long‐isolated islands, our data suggest that geographical divergence in mean adult body sizes in this system initially is driven by a rapid shift due to phenotypic plasticity, with the divergence later canalized by a gradual accumulation of genetic differentiation.  相似文献   

5.
The first study on the genetic variability of a wingless subantarctic fly (Diptera: Sphaeroceridae) at Iles Crozet is presented. Flies of the genus Anatalanta live mainly in seabird colonies from the littoral level to 700 m a.s.l. Two species are known: A. aptera Eaton and A. crozetensis Enderlein. Several morphological forms from 2 islands have been surveyed and 21 enzyme systems, involving 30 common putative enzyme loci, were scored from reared individuals. Mean heterozygosity values vary from 0.053 to 0.169. Genetic differentiation is weak with low Nei's distances. Noticeable gaps between morphological and genetic data are emphasized and question the real taxonomic status of the two recognized species. It is now necessary to compare populations of the genus Anatalanta from its whole distributional range (Iles Crozet, Iles Kerguelen and Heard Island). An improved understanding of the historical processes by which these islands were colonized could result from these studies. Received: 12 August 1996 / Accepted: 30 June 1997  相似文献   

6.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   

7.
Understanding the underlying causes of phenotypic trait variation among populations is important for informing conservation decisions. This knowledge can be used to determine whether locality matters when sourcing populations for habitat restoration. Uniola paniculata is a federally protected coastal dune grass native to the southeastern Atlantic and the Gulf coasts of the USA that is often used to stabilize restored dune habitats. This study uses neutral genetic markers (allozymes) and a greenhouse common garden study to determine the relative contributions of neutral evolutionary processes and natural selection to patterns of phenotypic variation among natural populations of U. paniculata. Seeds were sourced from foredune and backdune populations spanning shoreline-to-landward environmental gradients on each of four Georgia barrier islands. Based on previous work, we expected to find evidence of divergent selection among populations located on the shoreline-to-landward environmental gradient. However, differences among islands, rather than intra-island habitat differences, drive divergent selection on aboveground and total biomass. The lack of evidence for divergent selection across the shoreline-to-landward gradient suggests that previously documented intra-island trait variation is likely due to phenotypic plasticity. Our findings have implications for conservation and restoration efforts involving U. paniculata, as there is evidence for divergent selection among populations located on neighboring islands.  相似文献   

8.
The taxonomy of many species is still based solely on phenotypic traits, which is often a pitfall for the understanding of evolutionary processes and historical biogeographic patterns, especially between closely related species due to either phenotypic conservatism or plasticity. Two widely distributed Neotropical leaf frogs from the Phyllomedusa burmeisteri species group (P. burmeisteri and Phyllomedusa bahiana) constitute a paramount example of closely related species with relatively unstable taxonomic history due to a large phenotypic variation. Herein, we analysed ~260 individuals from 57 localities distributed across the range of the two species to contrast individual phenotypic with an integrative phylogenetic and phylogeographic multilocus approach. We aim to clarify species limits, investigate potential undocumented diversity and examine to what extent taxonomic uncertainties could lead to misleading hypotheses on phylogeographic and interspecific hybridization patterns. Our molecular analysis supports the recognition of the two currently defined species, providing evidences for one novel and highly divergent evolutionary unit within the range of P. burmeisteri, which encompasses its type locality (Rio de Janeiro city). Spatial patterns of genetic and the colour of the hidden areas of the thigh was not congruent, varying considerably both within and between populations of both species. Genetic data showed signs of admixture between both species but do not corroborate the previously inferred wide area of introgression based on the distribution of the intermediate phenotype. Our results suggest that phenotypic variation can result from local adaptations, geographic isolation and/or evolutionary processes and, thus, cannot be used to reliably diagnose P. burmeisteri and P. bahiana. Globally, this study underscores the need of a geographical broad sampling of widespread species and the combination of molecular and phenotypic data to delineate species limits and phylogeographic patterns in species with complex taxonomy.  相似文献   

9.
Background: Range expansion often results in colonisation bottlenecks that should both deplete genetic diversity and increase genetic differentiation towards the margins of a species' geographic distribution.

Aims: We tested whether genetic differentiation increased among populations of the annual plant Mercurialis annua after its colonisation of the Iberian Peninsula from Morocco. Previous work showed that this colonisation resulted in a decrease of phenotypic and genetic diversity from the core in North Africa towards the distribution margins of M. annua in north-eastern and north-western Spain.

Methods: Seeds were sampled from 20 populations located across the hexaploid range of M. annua. Patterns of phenotypic and genetic differentiation among experimentally grown populations were analysed and compared between the Iberian Peninsula and North Africa.

Results: The level of phenotypic and genetic differentiation among populations in the expanded range of the Iberian Peninsula was similar to that in the core range in North Africa.

Conclusions: Our findings imply that the observed effects of range expansion on genetic differentiation may be independent of the effects on genetic diversity. They point to the importance of taking both historic and contemporary processes of migration into account when predicting the results of range expansion.  相似文献   

10.
The Southern Ocean contains some of the most isolated islands on Earth, and fundamental questions remain regarding their colonization and the connectivity of their coastal biotas. Here, we conduct a genetic investigation into the Cellana strigilis (limpet) complex that was originally classified based on morphological characters into six subspecies, five of which are endemic to the New Zealand (NZ) subantarctic and Chatham islands (44–52°S). Previous genetic analyses of C. strigilis from six of the seven island groups revealed two lineages with little or no within‐lineage variation. We analysed C. strigilis samples from all seven island groups using two mitochondrial (COI and 16S), one nuclear (ATPase β) and 58 loci from four randomly amplified polymorphic DNA markers (RAPDs) and confirmed the existence of two distinct lineages. The pronounced genetic structuring within each lineage and the presence of private haplotypes in individual islands are the result of little genetic connectivity and therefore very high self‐recruitment. This study supports the significance of the subantarctic islands as refugia during the last glacial maximum and adds to the knowledge of contemporary population connectivity among coastal populations of remote islands in large oceans and the distance barrier to gene flow that exists in the sea (despite its continuous medium) for most taxa.  相似文献   

11.
Populations of the lizards Anolis carolinensis and A. sagrei were experimentally introduced onto small islands in the Bahamas. Less than 15 years after introduction, we investigated whether the populations had diverged and, if so, whether differentiation was related to island vegetational characteristics or propagule size. No effect of founding population size was evident, but differentiation of A. sagrei appears to have been adaptive, a direct relationship existed between how vegetationally different an experimental island was from the source island and how much the experimental population on that island had diverged morphologically. Populations of A. carolinensis had also diverged, but were too few for quantitative comparisons. A parallel exists between the divergence of experimental populations of A. sagrei and the adaptive radiation of Anolis lizards in the Greater Antilles; in both cases, relative hindlimb length and perch diameter are strongly correlated. This differentiation could have resulted from genetic change or environmentally-driven phenotypic plasticity. Laboratory studies on A. sagrei from a population in Florida indicate that hindlimb length exhibits adaptive phenotypic plasticity. Further studies are required to determine if the observed differences among the experimental populations are the result of such plasticity. Regardless of whether the differences result from plasticity, genetic change, or both, the observation that anole populations differentiate rapidly and adaptively when exposed to novel environmental conditions has important implications for understanding the adaptive radiation of Caribbean anoles.  相似文献   

12.
Aims Developing plant conservation strategies requires knowledge of ecological and genetic processes underlying population dynamics. We aimed to quantify morphological and genetic differentiation among remnant populations of the iconic coco‐de‐mer palm Lodoicea maldivica. We hypothesized that limited gene flow among widely spaced populations would result in high genetic variation and large phenotypic differences among populations. Location Islands of Praslin and Curieuse (CU), Seychelles, Indian Ocean. Methods We conducted an extensive population survey and recorded morphological parameters for 447 Lodoicea in the main populations at Vallée de Mai (VM) and Fond Ferdinand (FF) on Praslin, and on CU. We collected leaf material from 180 trees in these populations for DNA genotyping using amplified fragment length polymorphisms. Results A total of 16,766 Lodoicea trees were recorded in the three populations (72.6% of Lodoicea on both islands). Lodoicea trees at VM and FF showed similar morphology, but differed in most parameters from those at CU, which were shorter, grew more slowly and produced fewer seeds. Mean overall genetic diversity was 0.337, and percentage of polymorphic loci was 91.1. Genetic diversity of the CU population was lower than that at VM and FF. There was weak genetic differentiation between CU and Praslin populations, but 99% of all genetic diversity was within populations. Main conclusions Trees on CU differed in growth and morphology from those of the two Praslin populations. These phenotypic differences, however, were not mirrored in the genetic structure of the populations. All populations were relatively genetically diverse with remarkably little differentiation among populations. This suggests that the capacity of Lodoicea to dominate across a range of habitats may be because of high phenotypic plasticity. High genetic connectivity may be maintained through long‐distance wind pollination. Given the uncertainty about the extent of underlying adaptive variation, we recommend that restoration projects avoid transferring seeds between island populations.  相似文献   

13.
Recent analyses of molecular markers have significantly revised the traditional taxonomy of Podarcis species (Squamata: Lacertidae), leading to critically reconsider the taxonomic value of several subspecies described only on morphological bases. In fact, lizards often exhibit high morphological plasticity both at the intra‐specific and the intra‐population level, especially on islands, where phenotypic divergences are mainly due to local adaptation, rather than to evolutionary differentiation. The Common wall lizard Podarcis muralis exhibits high morphological variability in biometry, pholidosis values and colour pattern. Molecular analyses have confirmed the key role played by the Italian Peninsula as a multi‐glacial refuge for P. muralis, pointing out the lack of congruence between mitochondrial lineages and the four peninsular subspecies currently recognized. Here, we analyse a portion of the protein‐encoding cytochrome b gene in the seven subspecies described for the Tuscan Archipelago (Italy), in order to test whether the mitochondrial haplotypes match the morphologically based taxonomy proposed for Common wall lizard. We also compare our haplotypes with all the others from the Italian Peninsula to investigate the presence of unique genetic lineages in insular populations. Our results do not agree completely with the subspecific division based on morphology. In particular, the phylogenetic analyses show that at least four subspecies are characterized by very similar haplotypes and fall into the same monophyletic clade, whereas the other three subspecies are closer to peninsular populations from central Italy. From these results, we conclude that at least some subspecies could be better regarded as simple eco‐phenotypes; in addition, we provide an explanation for the distinctiveness of exclusive lineages found in the archipelago, which constituted a refuge for this species during last glacial periods.  相似文献   

14.
Two experiments were carried out using two different approaches to compare populations ofCrepis tectorum (Asteraceae). One was based on a comparison of means of various vegetative and reproductive characters and another was based on a comparison of response patterns of the same characters in a series of environments. Population divergence within two earlier recognized form series, one from weed habitats and one from alvar habitats on Baltic islands, resulted in a partially overlapping pattern in cluster analyses based on character means. However, the pattern revealed by a comparison of the direction and amount of plastic response suggested that populations within the two form series had more similar response patterns than other combinations of populations. It was concluded that patterns of plasticity may provide useful additional information on the overall similarity among taxa. An hypothesis that plants in weed populations should exhibit a greater phenotypic response to the environments than plants in alvar populations was rejected.  相似文献   

15.
The objectives of the study were to assess the phenotypic variation in the vulnerability to water stress-induced cavitation (estimated by P50, or the xylem water potential which causes a 50% loss of conductivity) and the trade-offs between P50 and related hydraulic traits, i.e., stem specific conductivity (K s), slope of the vulnerability curve (slope), wood density and branch size. Variability was examined for six Pinus pinaster populations covering the latitudinal range of the species and plasticity was tested through two provenance-progeny trial sites (xeric/mesic). As expected, the overall values of P50, K s and branch size decreased in the xeric site. Variation in P50 and K s among populations was mainly the result of phenotypic plasticity, while wood density was genetically controlled and not affected by the environment. Stress conditions in the xeric site promoted a convergence in P50 and K s as a result of the high phenotypic plasticity of the populations from mesic origins. In the mesic site, the ranking of populations for cavitation resistance and hydraulic capacity was consistent with the geographic location of the seed source. Higher resistance to cavitation was related to lower K s, branch size and slope, mainly at the population level, but also as a general trend across individuals. In a warmer and drier climate, there could be a potential selection of Pinus pinaster populations from mesic origins, which showed a great responsiveness and adjustment to drought conditions (similar or higher P50 than the populations from dry origins), in addition to a high wood density and growth.  相似文献   

16.
Antarctica is one of the less prone environments for plant invasions, nevertheless a growing number of non-native species have been registered in the last decades with negative effects on native flora. Here we assessed adaptive phenotypic plasticity in three photoprotective traits (non-photochemical quenching, total soluble sugars, and de-epoxidation state of xanthophylls cycle), and fitness-related traits (maximum quantum yield, photosynthetic rate and total biomass) in the invasive species Poa annua and Deschampsia antarctica under current conditions of water availability and those projected by climate change models. In addition, two manipulative experiments in controlled and field conditions were conducted to evaluate the competitive ability and survival of both species under current and climate change conditions. Moreover, we performed an experiment with different water availabilities to assess cell damage as a potential mechanism involved in the competitive ability deployed in both species. Finally, was assessed the plasticity and biomass of both species subject to factorial abiotic scenarios (water × temperature, and water × nutrients) ranging from current to climate change condition. Overall, results showed that P. annua had greater phenotypic plasticity in photoprotective strategies, higher performance, and greater competitive ability and survival than D. antarctica under current and climate change conditions. Also, cell damage, assessed by lipid peroxidation, was significantly greater in D. antarctica when grown in presence of P. annua compared when grown alone. Finally, P. annua showed a greater plasticity and biomass than D. antarctica under the factorial abiotic scenarios, being more evident under a climate change scenario (i.e., higher soil moisture). Our study suggests that the high adaptive plasticity and competitive ability deployed by P. annua under current and climate change conditions allows it to cope with harsh abiotic conditions and could help explain its successful invasion in the Antarctica.  相似文献   

17.
Morphometric methods allow the quantification of directions of phenotypic changes and their statistical comparison in a morphometric space. We applied this approach to investigate several candidate factors to explain changes in mandible shape occurring in house mice (Mus musculus domesticus, Mammalia, Rodentia) in Corsica and a nearby islet. The role of niche widening and of the concomitant change in diet was evaluated by comparing the micro‐evolutionary insular change to the macro‐evolutionary difference between omnivorous and herbivorous rodents. Phenotypic plasticity, which may contribute to rapid insular evolution, was assessed by breeding laboratory mice on hard versus soft food. The related change in mandible shape was compared with differences between continental and insular populations. The role of allometry was evaluated by assessing shape change related to size within the continental population and comparing this direction of change with differences on islands. Finally, evolution may be facilitated along the direction of the greatest phenotypic variance. This hypothesis was tested by computing in wild populations vectors corresponding to this direction and by comparing these vectors with those corresponding to estimates of shape changes related to plasticity, micro‐ and macro‐evolutionary processes. In Corsica, the congruence in directions of macro‐ and micro‐evolutionary phenotypic vectors (Corsican/continental mice versus omnivorous/herbivorous rodents) supports the hypothesis of adaptation in mandible shape evolution. By contrast, on the islet, phenotypic divergence follows directions of plastic response to food consistency as well as within‐population allometry. Thus, results suggest differences in the relative importance of processes which may influence rodent mandibular shape depending on the size of the islands they colonized. Faster evolution and plasticity may be more evident in small and often ephemeral populations living on small islands, whereas micro‐evolutionary processes may have enough time and genetic variability to progressively ‘align’ with macro‐evolutionary trends in large populations from big islands.  相似文献   

18.
We analyzed variation in phenotypic plasticity of life history traits between two Cardamine flexuosa populations based on differences in plasticity of age and size at maturity. C. flexuosa (Cruciferae) is a facultative, vernalization-sensitive, long-day annual, and its phenology and the phenotypic expressions of many life history traits are largely controlled by photoperiod and vernalization in natural populations. We used plants from two populations which differed in their responses to chilling and photoperiod treatments. The timing of developmental processes was changed by controlling temperature and photoperiod regimes in growth chambers. Plasticity in size at maturity was analyzed as changes in a growth trajectory using two parameters, age at maturity (Δt) and growth rate (k). Both traits showed plasticity, but differences between the populations were found mostly for Δt. Distinctive differences in size at maturity of individuals in the two populations were mainly due to different amounts of plasticity in Δt. Variations in plasticity of nine other life history traits and their associations to age and size at maturity were also analyzed. Variation for eight of the traits can be described, at least in part, as a function of age and size at maturity for both populations, and most of the variation in the total number of seeds was explained by age and size at maturity. Only age at maturity had any effect on changes in resource allocation. The nine life history traits were integrated through associated character expressions with age and size at maturity. Changes in the association between a trait and age and/or size at maturity were rather conservative compared to changes in the plasticity of a trait between the two populations. Associations with age and size at maturity are mostly explicable in terms of inherent relationships in the developmental processes, and they may limit the ecological range expansion and the adaptive evolution of plasticity in C. flexuosa. The negative correlation between reproductive allocation and age at maturity can be a cost of delaying maturation in C. flexuosa.  相似文献   

19.
Environmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternatively, climate change could induce maladaptive plasticity, reducing fitness, and potentially stalling adaptation and migration. Here, we quantified plasticity in life history, foliar morphology, and ecophysiology in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In this region, warming winters are reducing snowpack and warming springs are advancing the timing of snow melt. We hypothesized that traits that were historically advantageous in hot and dry, low‐elevation locations will be favored at higher elevation sites due to climate change. To test this hypothesis, we quantified trait variation in natural populations across an elevational gradient. We then estimated plasticity and genetic variation in common gardens at two elevations. Finally, we tested whether climatic manipulations induce plasticity, with the prediction that plants exposed to early snow removal would resemble individuals from lower elevation populations. In natural populations, foliar morphology and ecophysiology varied with elevation in the predicted directions. In the common gardens, trait plasticity was generally concordant with phenotypic clines from the natural populations. Experimental snow removal advanced flowering phenology by 7 days, which is similar in magnitude to flowering time shifts over 2–3 decades of climate change. Therefore, snow manipulations in this system can be used to predict eco‐evolutionary responses to global change. Snow removal also altered foliar morphology, but in unexpected ways. Extensive plasticity could buffer against immediate fitness declines due to changing climates.  相似文献   

20.
Summary Adaptive variation can exist at a variety of scales in biological systems, including among species, among local populations of a single species and among individuals within a single population. Trophic or resource polymorphisms in fishes are a good example of the lowest level of this hierarchy. In lakes without bluegill sunfish (Lepomis macrochirus), pumpkinseed sunfish (Lepomis gibbosus) can be trophically polymorphic, including a planktivorous limnetic form found in the pelagic habitat, in addition to the usual benthic form found in the littoral zone. In this paper we examine the degree to which morphological differences between the two forms are caused by genetic differences versus phenotypic plasticity. Adults from pelagic and littoral sites in Paradox Lake, NY, were bred separately and their progeny were raised in cages both in the open water and shallow water habitats of an artificial pond. The experimental design permitted two tests of genetic differences between the breeding stocks (in open and shallow water cages, respectively) and two tests of phenotypic plasticity (in the limnetic and benthic offspring, respectively). Limnetic progeny were more fusiform than benthic progeny raised in the same habitat. In addition, progeny of both stocks displayed limnetic-type characteristics when raised in the open water and benthic-type characteristics in the shallow water. Thus, genetic differences and phenotypic plasticity both contributed to the trophic polymorphism. Phenotypic plasticity and genetic differentiation accounted for 53 and 14%, respectively, of the variation in morphology. This study addresses the nature of subtle phenotypic differences among individuals from a single population that is embedded within a complex community, a condition that is likely to be the norm for most natural populations, as opposed to very large differences that have evolved in relatively few populations that reside in species-poor environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号