首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The typical declining trend of electroencephalographic (EEG) slow-wave activity (SWA) within a sleep period is represented in the two-process model of sleep regulation by an exponentially decaying process (Process S). The model has been further elaborated to simulate not only the global changes of SWA, but also the dynamics within non-rapid-eye-movement (non-REM) sleep episodes. In this new model, the initial intraepisodic buildup of SWA is determined by the combined action of an exponentially increasing process and a saturation process, whereas its fall at the end of an episode is due to an exponentially decreasing process. The global declining trend of SWA over consecutive episodes results from the monotonic decay of the intraepisodic saturation level. In contrast to Process S in the two-process model, this decay is not represented by an exponential function, but is proportional to the momentary level of SWA. REM sleep episodes are triggered by an external function. The model allows one to simulate the ultradian pattern of SWA for baseline nights as well as changes induced by a prolonged waking period, a daytime nap, a partial slow-wave sleep deprivation, or an antidepressant drug.  相似文献   

2.
Airway occlusion in awake humans producesa somatosensory evoked response called the respiratory-related evokedpotential (RREP). In the present study, 29 channel evoked-potentialrecordings were obtained from seven men who were exposed to 250-msinspiratory airway occlusions during wakefulness, stage 1, stage 2, andslow-wave sleep. The RREP recorded during wakefulness was similar toprevious reports, with the unique observation of an additionalshort-latency positive peak with a mean latency of 25 ms. Short-latencyRREP components were maintained in non-rapid-eye-movement (NREM) sleep. The clearly seen N1 vertex andlate positive complex components during wakefulness were markedlyattenuated during NREM sleep, and two large negative components(N300 andN550) dominated the sleep RREP.These findings indicate the maintenance of central nervous systemmonitoring of respiratory afferent information during NREM sleep,presumably to facilitate protective arousal responses topathophysiological respiratory phenomena.

  相似文献   

3.
4.
Photoperiod influences the distribution of sleep and waking and electroencephalogram (EEG) power density in the Djungarian hamster. In an experimental procedure combining short photoperiod (SP) and low ambient temperature, the light-dark difference in the amount of sleep was decreased, and the changes in slow-wave activity (SWA) (mean EEG power density between 0.75 and 4.0 Hz) in nonrapid eye movement (NREM) sleep within 24 h were abolished. These findings, obtained in three different groups of animals, suggested that at the lower ambient temperature, the influence of the circadian clock on sleep-wake behavior was diminished. However, it remained unclear whether the changes were due to the photoperiod, ambient temperature, or both. Here, the authors show that EEG and electromyogram recordings in a single group of animals sequentially adapted to a short and long photoperiod (LP) at low ambient temperature (approximately 15 degrees C) confirm that EEG power is reduced in SP. Moreover, the nocturnal sleep-wake behavior and the changes in SWA in NREM sleep over 24 h were restored by returning the animals to LP and retaining ambient temperature at 15 degrees C. Therefore, the effects cannot be attributed to ambient temperature alone but are due to a combined effect of temperature and photoperiod. When the Djungarian hamster adapts to winter conditions, it appears to uncouple sleep regulation from the circadian clock.  相似文献   

5.
Certain correlations between spindling and delta-activity during slow-wave sleep (SWS) development have been studied in experiments on man and animals. Interaction between systems of delta-activity and spindling generation is discussed as a possible mechanism underlying development of SWS. Amplitude-modulated stimulation of non-specific thalamic structures has been shown to influence this interaction and development of sleep processes.  相似文献   

6.
It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM-linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM-dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes.  相似文献   

7.
Starvation and human slow-wave sleep   总被引:3,自引:0,他引:3  
  相似文献   

8.
Viral infections induce excess non-rapid eye movement sleep (NREMS) in mice. Growth hormone-releasing hormone receptor (GHRH receptor) was previously identified as a candidate gene responsible for NREMS responses to influenza challenge in mice. The dwarf lit/lit mouse with a nonfunctional GHRH receptor was used to assess the role of the GHRH receptor in viral-induced NREMS. After influenza A virus infection the duration and intensity [electroencephalogram (EEG) delta power] of NREMS increased in heterozygous mice with the normal phenotype, whereas NREMS and EEG delta power decreased in homozygous lit/lit mice. Lit/lit mice developed a pathological state with EEG slow waves and enhanced muscle tone. Other influenza-induced responses (decreases in rapid eye movement sleep, changes in the EEG high-frequency bands during the various stages of vigilance, hypothermia, and decreased motor activity) did not differ between the heterozygous and lit/lit mice. GH replacement failed to normalize the NREMS responses in the lit/lit mice after influenza inoculation. Decreases in NREMS paralleled hypothermia in the lit/lit mice. Lung virus levels were similar in the two mouse strains. Lit/lit mice had a higher death rate after influenza challenge than the heterozygotes. In conclusion, GHRH signaling is involved in the NREMS response to influenza infection.  相似文献   

9.
10.
We investigated the effect of acute and sustained inspiratory resistive loading (IRL) on the activity of expiratory abdominal muscles (EMGab) and the diaphragm (EMGdi) and on ventilation during wakefulness and non-rapid-eye-movement (NREM) sleep in healthy subjects. EMGdi and EMGab were measured with esophageal and transcutaneous electrodes, respectively. During wakefulness, EMGdi increased in response to acute loading (18 cmH2O.l-1.s) (+23%); this was accompanied by preservation of tidal volume (VT) and minute ventilation (VE). During NREM sleep, no augmentation was noted in EMGdi or EMGab. Inspiratory time (TI) was prolonged (+5%), but this was not sufficient to prevent a decrease in both VT and VE (-21 and -20%, respectively). During sustained loading (12 cmH2O.l-1 s) in NREM sleep, control breaths (C) were compared with the steady-state loaded breaths (SS) defined by breaths 41-50. Steady-state IRL was associated with augmentation of EMGdi (12%) and EMGab (50%). VT returned to control levels, expiratory time shortened, and breathing frequency increased. The net result was the increase in VE above control levels (+5%, P less than 0.01). No change was noted in end-tidal CO2 or O2. We concluded that 1) wakefulness is a prerequisite for immediate load compensation (in its absence, TI prolongation is the only compensatory response) and 2) during sustained IRL, the augmentation of EMGdi and EMGab can lead to complete ventilatory recovery without measurable changes in chemical stimuli.  相似文献   

11.
This study investigates the effect of mild physical activity before bedtime on the sleep pattern and heart rate during the night. Nine healthy subjects underwent a habituation night, a reference night, and a physical induction night. The physical induction night did not alter the sleep pattern. Physical activity before bedtime resulted in higher heart rate variance during slow-wave sleep. The low-frequency/high-frequency component (LF/HF) ratio during slow-wave sleep in the physical induction night was significantly higher than during the reference night. Increased mean heart rate and higher LF/HF ratio are related to decreased parasympathetic dominance. Exercise up to 1 h before bedtime thus seems to modify the quality of sleep.  相似文献   

12.
Ghrelin, an endogenous ligand of the growth hormone (GH) secretagogue (GHS) receptor, stimulates GH release, appetite, and weight gain in humans and rodents. Synthetic GHSs modulate sleep electroencephalogram (EEG) and nocturnal hormone secretion. We studied the effect of 4 x 50 microg of ghrelin administered hourly as intravenous boluses between 2200 and 0100 on sleep EEG and the secretion of plasma GH, ACTH, cortisol, prolactin, and leptin in humans (n = 7). After ghrelin administration, slow-wave sleep was increased during the total night and accumulated delta-wave activity was enhanced during the second half of the night. Rapid-eye-movement (REM) sleep was reduced during the second third of the night, whereas all other sleep EEG variables remained unchanged. Furthermore, GH and prolactin plasma levels were enhanced throughout the night, and cortisol levels increased during the first part of the night (2200-0300). The response of GH to ghrelin was most distinct after the first injection and lowest after the fourth injection. In contrast, cortisol showed an inverse pattern of response. Leptin levels did not differ between groups. Our data show a distinct action of exogenous ghrelin on sleep EEG and nocturnal hormone secretion. We suggest that ghrelin is an endogenous sleep-promoting factor. This role appears to be complementary to the already described effects of the peptide in the regulation of energy balance. Furthermore, ghrelin appears to be a common stimulus of the somatotropic and hypothalamo-pituitary-adrenocortical systems. It appears that ghrelin is a sleep-promoting factor in humans.  相似文献   

13.
14.
Two involvements of cellular membranes in slow-wave sleep (SWS) are discussed. In the first the endoplasmic reticulum (ER) is focussed upon, and in the second, the plasmalemma, where specific binding sites (receptors?) for promoters of slow-wave sleep are believed to be located. The study concerning the ER focusses on an enzyme in the brain, glucose-6-phosphatase, which, although present at low levels, manifests greatly increased activity during SWS compared to the waking state. The work on the plasmalemma has to do with the specific binding of muramyl peptides, inducers of slow-wave sleep, to various cells, and membrane preparations of various sorts, including those from brain tissue. Such cells as macrophages from mice, B-lymphocytes from human blood, and cells from a cell line (C-6 glioma) have been examined in this context.  相似文献   

15.
16.
Repetitive hypoxia followed by persistently increased ventilatory motor output is referred to as long-term facilitation (LTF). LTF is activated during sleep after repetitive hypoxia in snorers. We hypothesized that LTF is activated in obstructive sleep apnea (OSA) patients. Eleven subjects with OSA (apnea/hypopnea index = 43.6 +/- 18.7/h) were included. Every subject had a baseline polysomnographic study on the appropriate continuous positive airway pressure (CPAP). CPAP was retitrated to eliminate apnea/hypopnea but to maintain inspiratory flow limitation (sham night). Each subject was studied on 2 separate nights. These two studies are separated by 1 mo of optimal nasal CPAP treatment for a minimum of 4-6 h/night. The device was capable of covert pressure monitoring. During night 1 (N1), study subjects used nasal CPAP at suboptimal pressure to have significant air flow limitation (>60% breaths) without apneas/hypopneas. After stable sleep was reached, we induced brief isocapnic hypoxia [inspired O(2) fraction (FI(O(2))) = 8%] (3 min) followed by 5 min of room air. This sequence was repeated 10 times. Measurements were obtained during control, hypoxia, and at 5, 20, and 40 min of recovery for ventilation, timing (n = 11), and supraglottic pressure (n = 6). Upper airway resistance (Rua) was calculated at peak inspiratory flow. During the recovery period, there was no change in minute ventilation (99 +/- 8% of control), despite decreased Rua to 58 +/- 24% of control (P < 0.05). There was a reduction in the ratio of inspiratory time to total time for a breath (duty cycle) (0.5 to 0.45, P < 0.05) but no effect on inspiratory time. During night 2 (N2), the protocol of N1 was repeated. N2 revealed no changes compared with N1 during the recovery period. In conclusion, 1) reduced Rua in the recovery period indicates LTF of upper airway dilators; 2) lack of hyperpnea in the recovery period suggests that thoracic pump muscles do not demonstrate LTF; 3) we speculate that LTF may temporarily stabilize respiration in OSA patients after repeated apneas/hypopneas; and 4) nasal CPAP did not alter the ability of OSA patients to elicit LTF at the thoracic pump muscle.  相似文献   

17.
To study respiratory timing mechanisms in patients with occlusive apnea, inspiratory and expiratory times (TI and TE) were calculated from the diaphragmatic electromyogram obtained in seven patients during non-rapid-eye-movement (NREM) sleep. Peak diaphragmatic activity (EMGdi) had a curvilinear relationship with TI during the ventilatory and occlusive phases such that TI shortened as EMGdi decreased during the ventilatory phase (r = 0.87, P less than 0.05) and it prolonged as EMGdi increased during the occlusive phase (r = 0.89, P less than 0.02). However, EMGdi vs. TI for the occlusive phase was shifted to the right of that for the ventilatory phase, reflecting the relatively longer TI during upper airway occlusion. TI also had a linear relationship with pleural pressure (r = 0.94, P less than 0.001) that remained unchanged during the ventilatory and occlusive phases such that it prolonged as negative inspiratory pressure increased. These results indicate that respiratory timing is continuously modified in patients with occlusive apnea as inspiratory neural drive fluctuates during NREM sleep and suggest that this modification is due to the net effects of changing inspiratory neural drive and afferent input predominantly from upper airway mechanoreceptors.  相似文献   

18.
Administration of a single non-convulsive dose of insulin (1.0, I.U./kg., I.P.) which produced no observable gross behavioral changes in rats, reduced rapid eye movement (REM) sleep time 100% in the first 3 hrs. and 82% by the 4th hr., reaching control subject levels (saline-treated) by the 6th hr. In contrast, slow-wave sleep (NREM) time in insulin treated animals exceeded control subject levels by 49% by the end of the 2nd hr., returning to normal by the 5th hr. Although there was no difference between insulin and saline treated rats for the total 8 hr. post-injection recording period for total percentage of time awake, or slow-wave sleep time, a 44% reduction in REM sleep time was observed in insulin treated animals compared to that of a saline treated control. The significance of these findings are discussed in terms of known neurochemical changes i.e., an increase of both brain tryptophan and serotonin in rats, induced by a subconvulsive dose of exogenous insulin.  相似文献   

19.
20.
We hypothesized that a sleep-induced increase in mechanical impedance contributes to CO2 retention and respiratory muscle recruitment during non-rapid-eye-movement (NREM) sleep. The effect NREM sleep on respiratory muscle activity and CO2 retention was measured in healthy subjects who increased maximum total pulmonary resistance (RLmax, 1-81 cmH2O.l-1.s) from awake to NREM sleep. We determined the effects of this sleep-induced increase in airway impedance by steady-state inhalation of a reduced-density gas mixture (79% He-21% O2, He-O2). Both arterialized blood PCO2 (PaCO2) and end-tidal PCO2 (PETCO2) were measured. Inspiratory (EMGinsp) and expiratory (EMGexp) respiratory muscle electromyogram activity was measured. NREM sleep caused 1) RLmax to increase (7 +/- 3 vs. 39 +/- 28 cmH2O.l-1.s), 2) PaCO2 and/or PETCO2 to increase in all subjects (40 +/- 2 vs. 44 +/- 3 Torr), and 3) EMGinsp to increase in 8 of 9 subjects and EMGexp to increase in 9 of 17 subjects. Compared with steady-state air breathing during NREM sleep, steady-state He-O2 breathing 1) reduced RLmax by 38%, 2) decreased PaCO2 and PETCO2 by 2 Torr, and 3) decreased both EMGinsp (-20%) and EMGexp (-54%). We concluded that the sleep-induced increase in upper airway resistance accompanied by the absence of immediate load compensation is an important determinant of CO2 retention, which, in turn, may cause augmentation of inspiratory and expiratory muscle activity above waking levels during NREM sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号