首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recombinant arginase was generated for a whole-cell biotransformation system to convert l-arginine to l-ornithine in Escherichia coli. The gene ARG1 coding arginase from Bos taurus liver was synthesized and expressed in E. coli BL21 (DE3) via pETDuet-1. The recombinant arginase was used to catalyze l-arginine to l-ornithine and urea. The reaction was optimal at pH 9.5 and 37 °C. Manganese (10?5 M) and Emulsifier OP-10 [0.033 % (v/v)] could promote arginase activity. In a scale up study, l-arginine conversion rate reached 98 % with a final concentration of 111.52 g l-ornithine/l.  相似文献   

2.
l-DOPA (3,4-dihydroxyphenyl-l-alanine) is the most widely used drug for treatment of Parkinson’s disease. In this study Yarrowia lipolytica-NCIM 3472 biomass was used for transformation of l-tyrosine to l-DOPA. The process parameters were optimized using response surface methodology (RSM). The optimum values of the tested variables for the production of l-DOPA were: pH 7.31, temperature 42.9 °C, 2.31 g l?1 cell mass and 1.488 g l?1 l-tyrosine. The highest yield obtained with these optimum parameters along with recycling of the cells was 4.091 g l?1. This optimization of process parameters using RSM resulted in 4.609-fold increase in the l-DOPA production. The statistical analysis showed that the model was significant. Also coefficient of determination (R2) was 0.9758, indicating a good agreement between the experimental and predicted values of l-DOPA production. The highest tyrosinase activity observed was 7,028 U mg?1 tyrosine. l-DOPA production was confirmed by HPTLC and HPLC analysis. Thus, RSM approach effectively enhanced the potential of Y. lipolytica-NCIM 3472 as an alternative source to produce l-DOPA.  相似文献   

3.
l-dopa-l-Tyr was synthesized by Fmoc solid-phase peptide synthesis, purified by reversed-phase HPLC and characterized by using 1H, 13C NMR and ESI–MS analyses. The interaction of l-dopa-l-Tyr and l-dopa with ctDNA has been investigated respectively by UV–vis absorption and fluorescence spectroscopy. The results showed that both l-dopa and l-dopa-l-Tyr interacted with ctDNA through intercalative mode and l-dopa-l-Tyr showed a higher affinity for DNA. Meanwhile, compared with the free l-dopa, gel electrophoresis assay also demonstrated that l-dopa-l-Tyr interacted with DNA by intercalation.  相似文献   

4.
5.
Enantiomerically pure l-homophenylalanine (l-HPA) is a key building block for the synthesis of angiotensin-converting enzyme inhibitors and other chiral pharmaceuticals. Among the processes developed for the l-HPA production, biocatalytic synthesis employing phenylalanine dehydrogenase has been proven as the most promising route. However, similar to other dehydrogenase-catalyzed reactions, the viability of this process is markedly affected by insufficient substrate loading and high costs of the indispensable cofactors. In the present work, a highly efficient and economic biocatalytic process for l-HPA was established by coupling genetically modified phenylalanine dehydrogenase and formate dehydrogenase. Combination of fed-batch substrate addition and a continuous product removal greatly increased substrate loading and cofactor utilization. After systemic optimization, 40 g (0.22 mol) of keto acid substrate was transformed to l-HPA within 24 h and a total of 0.2 mM NAD+ was reused effectively in eight cycles of fed-batch operation, consequently giving an average substrate concentration of 510 mM and a productivity of 84.1 g l?1 day?1 for l-HPA. The present study provides an efficient and feasible enzymatic process for the production of l-HPA and a general solution for the increase of substrate loading.  相似文献   

6.
The haploid phase (myxamoebae-swarm cells) of the myxomycete Physarum flavicomum grew readily in chemically defined liquid media. The minimal medium contained salts, glucose, biotin, thiamine, hematin, glycine, l-arginine and l-methionine. Cell yields of 1.4x107 cells/ml were obtained in this medium in aerobic shake culture. These cells consumed about 35 μliters of oxygen/mg protein·hr in the minimal medium. The morphology of cells maintained in this medium appeared to be “normal”. l-valine replaced either glycine or l-methionine in the minimal medium but the growth rates and cell yields were reduced. Growth rates increased in media containing four, seven, or fourteen amino acids.  相似文献   

7.
Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of 3H-l-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. 3H-l-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na+- and K+-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. 3H-l-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, l-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM 3H-l-leucine in both Na+- and K+-containing incubation media. The residual 3H-l-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an l-methionine- and cation-independent transport system. 3H-l-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [l-leucine], following the carrier-mediated Michaelis–Menten equation. In NaCl, 3H-l-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. l-methionine or l-phenylalanine (7 and 20 mM) were competitive inhibitors of 3H-l-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in 3H-l-leucine influx K M, but no significant response in 3H-l-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with 3H-l-leucine, significantly (p < 0.01) increasing 3H-l-leucine influx K M in the presence of sodium, but having negligible effect on 3H-l-leucine influx J max in the same medium. These results suggest that shrimp BBMV transport 3H-l-leucine by a single l-methionine- and l-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na+ or K+ acting as co-transport drivers binding to shared activator sites.  相似文献   

8.
Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (l-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum l-AI were used for production of d-tagatose from d-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of d-galactose to d-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L?1 substrate and at 37.5 °C after 5 days. The d-tagatose production rate of 185 g L?1 day?1 was obtained at 300 g L?1 galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial d-tagatose production rate was 290 g L?1 day?1 under these conditions.  相似文献   

9.
ε-Poly-l-lysine (ε-PL), one of the only two homo-poly amino acids known in nature, is used as a preservative. In this study, strategies of feeding precursor l-lysine into 5 L laboratory scale fermenters, including optimization of l-lysine concentration and time, was investigated to optimize the production of ε-PL by Streptomyces sp. M-Z18. The optimized strategy was then used in ε-PL fed-batch fermentation in which glucose and glycerol served as mixed carbon sources. In this way, a novel ε-PL production strategy involving precursor l-lysine coupled with glucose–glycerol co-fermentation was developed. Under optimal conditions, ε-PL production reached 37.6 g/l, which was 6.2 % greater than in a previous study in which glucose and glycerol co-fermentation was performed without added l-lysine (35.14 g/l). To the best of our knowledge, this is the first report of the enhancement of ε-PL production through l-lysine feeding to evaluate the use of fermenters. Meanwhile, the role of l-lysine in the promotion of ε-PL production, participating ε-PL synthesis as a whole, was first determined using the l-[U–13C] lysine labeling method. It has been suggested that the bottleneck of ε-PL synthesis in Streptomyces sp. M-Z18 is in the biosynthesis of precursor l-lysine. The information obtained in the present work may facilitate strain improvement and efficient large-scale ε-PL production.  相似文献   

10.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.  相似文献   

11.
The uptake ofl-andd-aspartate was studied in astrocytes cultured from prefrontal cortex and in granule cells cultured from cerebellum. A high affinity uptake system forl- andd-aspartate was found in both cell types, and the two stereoisomers exhibited essentially the sameK m - andV max -values in bouth astrocytes (l-aspartate:K m 77 μM;V max 11.8 nmol×min?1×mg?1;d-aspartate:K m 83 μM;V max 14.0 nmol×min?1×mg?1) and granule cells (l-aspartate:K m 32 μM;V max 2.8 nmol ×min?1×mg?1;d-aspartate:K m 26 μM;V max 3.0 nmol×min?1×mg?1). To investigate whetherl-glutamate,l-aspartate andd-aspartate use the same uptake system a detailed kenetic analysis was performed. The uptake kinetics of each one of the three amino acids was studied in the presence of the two other amino acids, and no essential differences between the uptake characteristics of the amino acids were found. In addition to the uptake studies the release ofD-aspartate from cerebellar granule cells was investigated and compared withl-glutamate release. A Ca2+-dependent, K+-induced release was found for both amino acids.  相似文献   

12.
Nitric oxide (NO) is a free radical that is produced in cells from l-arginine. NO is involved in the physiological control of different tissues, but it can act as a toxic mediator in the cells. In this study we investigated the effect of l-arginine on the genotoxicity induced by methyl methanesulfonate (MMS) in human lymphocytes. Blood was treated with NG-nitro-l-arginine methyl ester (l-NAME) as an inhibitor of nitric oxide synthase for finding out the role of NO in this effect. Human whole blood was treated with l-arginine (50, 100 and 250 μM) and/or l-NAME, then it was treated in vitro with MMS after 24 h of culture. The lymphocytes were stimulated by phytohemagglutinin to find out the micronuclei in cytokinesis-blocked binucleated cells. DNA fragmentation of lymphocytes was detected by using a fluorescence microscope after propidium iodide staining. These data showed that arginine increased the frequency of MMS-induced micronuclei in lymphocytes. However, the genotoxicity was decreased by using l-NAME. Arginine and l-NAME have not shown any DNA damage in cultured human lymphocytes. In conclusion, addition of l-arginine to MMS as an alkylating agent caused an increase of DNA damage in human lymphocytes. This enhancement of genotoxicity was reduced by NAME as NO inhibitor. It is thus cleared that an increase of DNA damage by arginine and MMS is related to NO production.  相似文献   

13.
The gene of an l-rhamnose isomerase (RhaA) from Bacillus subtilis was cloned to the pET28a(+) and then expressed in the E. coli ER2566. The expressed enzyme was purified with a specific activity of 3.58 U/mg by His-Trap affinity chromatography. The recombinant enzyme existed as a 194 kDa tetramer and the maximal activity was observed at pH 8.0 and 60°C. The RhaA displayed activity for l-rhamnose, l-lyxose, l-mannose, d-allose, d-gulose, d-ribose, and l-talose, among all aldopentoses and aldohexoses and it showed enzyme activity for l-form monosaccharides such as l-rhamnose, l-lyxose, l-mannose, and l-talose. The catalytic efficiency (k cat/K m) of the recombinant enzyme for l-rhamnose, l-lyxose, and l-mannose were 7,460, 1,013, and 258 M/sec. When l-xylulose 100 g/L and l-fructose 100 g/L were used as substrates, the optimum concentrations of RpiB were determined with 6 and 15 U/mL, respectively. The l-lyxose 40 g/L was produced from l-xylulose 100 g/L by the enzyme during 60 min, while l-mannose 25 g/L was produced from l-fructose 100 g/L for 80 min. The results suggest that RhaA from B. subtilis is a potential producer of l-form monosaccharides.  相似文献   

14.
The d,d-transpeptidase activity of Penicillin Binding Proteins (PBPs) is essential to maintain cell wall integrity. PBPs catalyze the final step of the peptidoglycan synthesis by forming 4 → 3 cross-links between two peptide stems. Recently, a novel β-lactam resistance mechanism involving l,d-transpeptidases has been identified in Enterococcus faecium and Mycobacterium tuberculosis. In this resistance pathway, the classical 4 → 3 cross-links are replaced by 3 → 3 cross-links, whose formation are catalyzed by the l,d-transpeptidases. To date, only one class of the entire β-lactam family, the carbapenems, is able to inhibit the l,d-transpeptidase activity. Nevertheless, the specificity of this inactivation is still not understood. Hence, the study of this new transpeptidase family is of considerable interest in order to understand the mechanism of the l,d-transpeptidases inhibition by carbapenems. In this context, we present herein the backbone and side-chain 1H, 15N and 13C NMR assignment of the l,d-transpeptidase from Bacillus subtilis (LdtBs) in the apo and in the acylated form with a carbapenem, the imipenem.  相似文献   

15.
The demand for d-2-phenylglycine used to synthesize semisynthetic antibiotics and pesticides is increasing. We have isolated a Chryseobacterium sp. that selectively transformed the l-form of racemic d,l-2-phenylglycine to (2S)-2-acetylamide-2-phenylacetic acid with a molar yield of 50 % and an enantiomer excess of >99.5 % under optimal culture conditions, consequently resulting in 99 % pure d-2-phenylglycine remaining in the culture. The enantioselective N-acetylation was catalyzed by an acetyl-CoA-dependent N-acetyltransferase whose synthesis was induced by l-2-phenylglycine. The enzyme differed from previously reported bacterial arylamine N-acetyltransferases in molecular mass and substrate specificity. The relative activity ratio of the enzyme with the substrates l-2-phenylglycine, d-2-phenylglycine, 2-(2-chlorophenyl)glycine, and 5-aminosalicylic acid (a good substrate of arylamine N-acetyltransferase) was 100:0:56.9:5.49, respectively. The biotransformation by the N-acetyltransferase-producing bacterium reported here could constitute a new preparative route for the enzymatic resolution of d,l-2-phenylglycine.  相似文献   

16.
γ-Glutamylamine cyclotransferase (gGACT) catalyzes the intramolecular cyclization of a variety of l-γ-glutamylamines producing 5-oxo-l-proline and free amines. Its substrate specificity implicates it in the downstream metabolism of transglutaminase products, and is distinct from that of γ-glutamyl cyclotransferase which acts on l-γ-glutamyl amino acids. To elucidate the mechanism by which gGACT distinguishes between l-γ-glutamylamine and amino acid substrates, the specificity of the rabbit kidney enzyme for the amide region of substrates was probed through the kinetic analysis of a series of l-γ-glutamylamines. The isodipeptide N ?-(l-γ-glutamyl)-l-lysine 1 was used as a reference. The kinetic constants of the l-γ-glutamyl derivative of n-butylamine 7, were nearly identical to those of 1. Introduction of a methyl or carboxylate group on the carbon adjacent to the side-chain amide nitrogen in l-γ-glutamylamine substrates resulted in a dramatic decrease in substrate properties for gGACT thus providing an explanation of why gGACT does not act on l-γ-glutamyl amino acids except for l-γ-glutamylglycine. Placement of substituents on carbons further removed from the side-chain amide nitrogen in l-γ-glutamylamines restored activity for gGACT, and l-γ-glutamylneohexylamine 19 had a higher specificity constant (k cat /K m) than 1. gGACT did not exhibit any stereospecificity in the amide region of l-γ-glutamylamine substrates. In addition, analogues (2630) with heteroatom substitutions for the γ methylene position of the l-γ-glutamyl moiety were examined. Several thiocarbamoyl derivatives of l-cysteine (2830) were excellent substrates for gGACT.  相似文献   

17.
Due to the unique role of l-proline in the folding and structure of protein, a variety of synthetic proline analogues have been developed. l-Proline analogues have been proven to be valuable reagents for studying cellular metabolism and the regulation of macromolecule synthesis in both prokaryotic and eukaryotic cells. In addition to these fundamental researches, they are useful compounds for industrial use. For instance, microorganisms that overproduce l-proline have been obtained by isolating mutants resistant to l-proline analogues. They are also promising candidates for tuning the biological, pharmaceutical, or physicochemical properties of naturally occurring or de novo designed peptides. Among l-proline analogues, l-azetidine-2-carboxylic acid (l-AZC) is a toxic non-proteinogenic amino acid originally found in lily of the valley plants and trans-4-hydroxy-l-proline (4-l-THOP) is the most abundant component of mammalian collagen. Many hydroxyprolines (HOPs), such as 4-l-THOP and cis-4-hydroxy-l-proline (4-l-CHOP), are useful chiral building blocks for the organic synthesis of pharmaceuticals. In addition, l-AZC and 4-l-CHOP, which are potent inhibitors of cell growth, have been tested for their antitumor activity in tissue culture and in vivo. In this review, we describe the recent discoveries regarding the physiological properties and microbial production and metabolism of l-proline analogues, particularly l-AZC and HOPs. Their applications in fundamental research and industrial use are also discussed.  相似文献   

18.
l-Lactic acid production by Lactobacillus casei was used as a model to study the mechanism of substrate inhibition and the strategy for enhancing l-lactic acid production. It was found that the concentration of cell growth and l-lactate decreased with the increase of glucose concentration and fermentation temperature. To enhance the osmotic stress resistance of the strain at high temperature, a mutant G-03 was screened and selected with 360?g/L glucose at 45°C as the selective criterion. To further increase the cell growth for lactic acid production, 3?g/L of biotin was supplemented to the medium. As a result, l-lactate concentration by the mutant G-03 reached 198.2?g/L (productivity of 5.5?g?L?1?h?1) at 41°C in a 7-L fermentor with 210?g/L glucose as carbon source. l-Lactate concentration and productivity of mutant G-03 were 115.2% and 97.8% higher than those of the parent strain, respectively. The strategy for enhancing l-lactic acid production by increasing osmotic stress resistance at high temperature may provide an alternative approach to enhance organic acid production with other strains.  相似文献   

19.
The reaction of potassium tetrachloroplatinate(II) with six representative sulfurcontaining amino acids, namely,d- andl-cysteine,d- andl-methionine and its methyl ester hydrochloride gives the corresponding enantiomerically purecis-dichloroplatinum(II) complexes. This represents the first reported series of well-characterized enantiomerically pure platinum(II) complexes for bothd- andl-amino acids. The spectroscopic properties, including IR,1H-NMR, and13C NMR, of these complexes and their configuration are discussed.  相似文献   

20.
Hyperhomocysteinemia is associated with various pathologies including cardiovascular disease, stroke, and cognitive dysfunctions. Systemic administration of homocysteine can trigger seizures in animals, and patients with homocystinuria suffer from epileptic seizures. Available data suggest that homocysteine can be harmful to human cells because of its metabolic conversion to homocysteine thiolactone, a reactive thioester. A number of reports have demonstrated a reduction of Na+/K+-ATPase activity in cerebral ischemia, epilepsy and neurodegeneration possibly associated with excitotoxic mechanisms. The aim of this study was to examine the in vivo effects of d,l-homocysteine and d,l-homocysteine thiolactone on Na+/K+- and Mg2+-ATPase activities in erythrocyte (RBC), brain cortex, hippocampus, and brain stem of adult male rats. Our results demonstrate a moderate inhibition of rat hippocampal Na+/K+-ATPase activity by d,l-homocysteine, which however expressed no effect on the activity of this enzyme in the cortex and brain stem. In contrast,d,l-homocysteine thiolactone strongly inhibited Na+/K+-ATPase activity in cortex, hippocampus and brain stem of rats. RBC Na+/K+-ATPase and Mg2+-ATPase activities were not affected by d,l-homocysteine, while d,l-homocysteine thiolactone inhibited only Na+/K+-ATPase activity. This study results show that homocysteine thiolactone significantly inhibits Na+/K+-ATPase activity in the cortex, hippocampus, and brain stem, which may contribute at least in part to the understanding of excitotoxic and convulsive properties of this substance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号