首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term changes in composition, structure and biodiversity (i.e. taxonomic richness, diversity index, species traits and habitat-affinity) of interstitial assemblages were studied in two floodplain systems: a restored backwater and an artificial drainage canal. Before restoration, the backwater, affected by both terrestrialisation and eutrophication, was weakly populated by a low diversified fauna dominated by walkers, macrofauna, detritivores, and stygoxenes (i.e. taxa that occur incidentally in ground waters) that reproduce biparentally and lack parental care. This backwater displayed an upstream–downstream gradient in response to restoration works. Upstream, the dredging of fine organic sediments favoured inputs of nutrient-poor groundwater and exchanges between groundwater and surface water that induced an increase in taxonomic richness (in both herbivores and stygoxenes). Downstream the deposition of fine sediment that was suspended in the water column by restoration work enhanced colmation that induced a decrease in herbivore and swimming taxa, and an increase in mesofaunal taxa, whilst phreatobites (i.e. taxa specialized to interstitial life) remained absent from the system. The drainage canal that was artificially hollowed-out to lower the surrounding water table, harbors mixed assemblages of epigean (i.e. taxa of surface-water habitats) and hypogean (i.e. taxa of groundwater habitats) taxa. The upstream part, which is weakly influenced by surface waters, was colonized by phreatobites as oligotrophic conditions increased. The intermediate part, which is fed by surface water and where mesotrophic conditions occurred as habitats progressively matured and diversified, showed diversification of its fauna. The downstream part of the drainage canal displayed the reverse dynamic – this suggests a reduction in groundwater supply due to the clogging of sediment interstices fine sediments, the deposition of which is linked to the Rossillon backwater restoration works.  相似文献   

2.
Aquatic macroinvertebrates living in anastomosing lowland rivers use different habitats and respond differently to the hydrological regime. In this paper, the structure and composition of benthic, drifting and marginal macroinvertebrate assemblages are analyzed in the lowland river Ctalamochita (Córdoba, Argentina). The assemblages were studied in an annual cycle; a comparison among the composition of benthos, drift and marginal fauna was carried out; and size structure of the assemblages was characterized. Samples were obtained from two sites: a rural and an urban site. In total 73 taxa of aquatic macroinvertebrates were collected. Benthos was characterized by Chironomidae and Oligochaeta; marginal fauna was mainly constituted by Coleoptera, Heteroptera, Decapoda, the Trichoptera Nectopsyche sp., Ephemeroptera and Odonata. Drifting assemblage was composed by macroinvertebrates from local and remote upstream benthos, and from the marginal zone. Marginal fauna diversity was higher than benthos and drift. Total biomass of the assemblages pooled together was relatively equitably among size classes. Larger size classes consisted of organisms from the marginal zone whereas the smallest ones were composed by benthic and drifting organisms. In the study area there is habitat partitioning in the lateral dimension of the river. Marginal fauna was more diverse due to the asymmetry of transport and deposit processes, which generate a heterogeneous habitat in the bankside. The relation between fine substrate and high current velocity determines an unstable habitat in the central channel, which makes colonization by benthic macroinvertebrates difficult.  相似文献   

3.
1. Natural experiments, in the form of disturbance from spates, were used to study the resistance and resilience of interstitial communities. Investigations were conducted in a by-passed section of the Rhône River characterized by an artificial hydrology with frequent spates separated by regular minimum discharge of 30 m3 s–1. 2. Three areas of a bar were studied, upwellings at the head of the bar (stations 1 and 2), and downwelling at the tail of the bar (station 3). In the head of the bar the substratum was characterized by stable cobbles, while mobile gravels dominated in the tail of the bar. At each station, samples were derived from four depths (0.5, 1.0, 1.5 and 2.0 m below the surface of the substratum). Fifteen spates occurred during the study period whose peak discharge ranged from 50 to 1640 m3 s–1. Temporal variations of the fauna were studied by comparing the spate effect observed 1 day (resistance), 7 days (resilience) and 17 days after the spate. Within-class correspondence analysis was used to compare the temporal variability of the fauna within each class {station/depth}. 3. The fauna differed markedly between the three stations, and the relative density of stygobionts (i.e. hypogean fauna) decreased from 55% at station 1 to 4% at station 3. The spatio-temporal variability increased dramatically from station 1 to station 3. 4. The results suggest that the hyporheic zone acts as a patchy refugium: the stations were more or less active refugial zones, depending on hydrology (upwelling or downwelling), substratum stability and spate amplitude. 5. The downwelling station was the main refugium area for benthic taxa. Important migrations of benthic groups (e.g. Gammarus, Cladocera) or hyporheic taxa (e.g. Cyclopoida and Harpacticoida) were observed deep into the sediment (2 m). Vertical movements of stygobionts (Niphargus, Niphargopsis) were also observed at high amplitude spates. These movements were very important (great numbers of individuals migrated) at low and medium magnitude spates, but were unimportant at high discharge, when the threshold of sediment instability was exceeded. In this case the substratum became mobile and induced drift of benthic organisms. 6. Conversely, in the upwelling stable stations, accumulation was less important (lower number of species and lower densities) but more constant with increasing discharge, suggesting that substratum stability is also a key factor. 7. Generally recovery was rapid at all stations (within 7 days) but no relationships were found between resilience (rate of recovery) and the amplitude of spates.  相似文献   

4.
1. In temporary rivers, viewed as coupled terrestrial–aquatic ecosystems, spatial and temporal transition zones between aquatic and terrestrial conditions are common and occur simultaneously. 2. The effects of artificial rewetting on terrestrial and aquatic invertebrate assemblages were examined in dry sediments collected from the Albarine River, France. Rewetted sediments had previously been dry for between 0.1 and 142 days. Dry sediments were collected directly from the streambed (DS) and from riparian gravel bars (RGB). 3. We first predicted that invertebrate responses to rewetting would vary with the duration of the preceding dry period. Second, we predicted convergence of the invertebrate assemblages in DS and RGB sediments with increasing duration of the dry period. Third, we predicted that an aquatic ‘invertebrate seedbank’ (aquatic life stages that persist within streambed sediments during dry periods) would contribute substantially to the resilience of benthic assemblages. 4. Results indicated that the duration of the dry period was the primary driver of aquatic and terrestrial responses to artificial rewetting. The density and richness of aquatic taxa decreased with the duration of the dry period in both DS and RGB sediments, whereas the density of terrestrial invertebrates increased in DS sediments. 5. No convergence between DS and RGB assemblage composition was observed with an increasing dry period. Although there were more aquatic organisms in DS sediments than in RGB sediments, there was no difference in taxonomic richness between sediment types. Even after prolonged dry periods (142 days), there was typically a lower density and taxonomic richness of terrestrial invertebrates in DS sediments than in adjacent RGB sediments. 6. The results suggest that the aquatic invertebrate seedbank could contribute substantially to the resilience of benthic assemblages in the Albarine River, in addition to other mechanisms such as drift and oviposition. Of the taxa in the benthos before and after the summer dry period, 65% were also recovered from artificially rewetted DS sediments. The simultaneous presence of temporal and spatial terrestrial–aquatic transition zones in temporary rivers increases successional diversity (i.e. mosaics of dry and saturated streambed patches at various stages of terrestrial and aquatic succession). This contribution to biodiversity emphasises the need to protect dry reaches of temporary rivers.  相似文献   

5.
Associations of benthic invertebrates from Potter Cove (Antarctica) were defined from photo-transects. Density, percentage cover, species richness S′, diversity index H′, evenness index J′ and mean-size estimations were studied in relation to water depth down to 30 m. A clear bathymetric pattern was evident, with two different communities at 15 and 30 m, and a transition area between 20 and 25 m. At 15 m we observed a small number of taxa (nine in total), a high percentage of bare substratum (95%), and the dominant species were pennatulids and the bivalve Laternula elliptica. From 20 to 30 m the dominant species was the ascidian Molgula pedunculata and there was a slight increase in S′, H′ and J′, as well as in the mean size of individuals, especially in M. pedunculata, while the proportion of bare substratum showed a constant decrease with depth. Using multivariate analyses, three faunal assemblages related to depth were defined and a strong association of some species, mainly predators and opportunistic necrophages, with M. pedunculata was revealed. Ice impact (icebergs and anchor ice) seems to be the major regulating factor of benthic assemblages in shallow waters. Received: 28 April 1997 / Accepted: 17 August 1997  相似文献   

6.
1. Human activities affect fish assemblages in a variety of ways. Large‐scale and long‐term disturbances such as in‐stream dredging and mining alter habitat and hydrodynamic characteristics within rivers which can, in turn, alter fish distribution. Habitat heterogeneity is decreased as the natural riffle–pool–run sequences are lost to continuous pools and, as a consequence, lotic species are displaced by lentic species, while generalist and invasive species displace native habitat specialists. Sediment and organic detritus accumulate in deep, dredged reaches and behind dams, disrupting nutrient flow and destroying critical habitat for habitat specialist species. 2. We used standard ecological metrics such as species richness and diversity, as well as stable isotope analysis of δ13C and δ15N, to quantify the differences in fish assemblages sampled by benthic trawls among dredged and undredged sites in the Allegheny River, Pennsylvania, U.S.A. 3. Using mixed‐effects models, we found that total catch, species richness and diversity were negatively correlated with depth (P < 0.05), while species richness, diversity and proportion of species in lithophilic (‘rock‐loving’) reproductive guilds were lower at dredged than at undredged sites (P < 0.05). 4. Principal components analysis and manova revealed that taxa such as darters in brood hider and substratum chooser reproductive guilds were predominantly associated with undredged sites along principal component axis 1 (PC1 and manova P < 0.05), while nest spawners such as catfish and open substratum spawners including suckers were more associated with dredged sites along PC2 (P < 0.05). 5. Stable isotope analysis of δ13C and δ15N revealed shifts from reliance on shallow water and benthic‐derived nutrients at undredged sites to reliance on phytoplankton and terrestrial detritus at deep‐water dredged sites. Relative trophic positions were also lower at dredged sites for many species; loss of benthic nutrient pathways associated with depth and dredging history is hypothesised. 6. The combination of ecological metrics and stable isotope analysis thus shows how anthropogenic habitat loss caused by gravel dredging can decrease benthic fish abundance and diversity, and that species in substratum‐specific reproductive guilds are at particular risk. The effects of dredging also manifest by altering resource use and nutrient pathways within food webs. Management and conservation decisions should therefore consider the protection of relatively shallow areas with suitable substratum for spawning for the protection of native fishes.  相似文献   

7.
1. Leaf litter constitutes the major source of organic matter and energy in woodland stream ecosystems. A substantial part of leaf litter entering running waters may be buried in the streambed as a consequence of flooding and sediment movement. While decomposition of leaf litter in surface waters is relatively well understood, its fate when incorporated into river sediments, as well as the involvement of invertebrate and fungal decomposers in such conditions, remain poorly documented. 2. We tested experimentally the hypotheses that the small interstices of the sediment restrict the access of the largest shredders to buried organic matter without compromising that of aquatic hyphomycetes and that fungal decomposers in the hyporheic zone, at least partly, compensate for the role of invertebrate detritivores in the benthic zone. 3. Alder leaves were introduced in a stream either buried in the sediment (hyporheic), buried after 2 weeks of exposure at the sediment surface (benthic‐hyporheic), or exposed at the sediment surface for the entire experiment (benthic). Leaf decomposition was markedly faster on the streambed surface than in the two other treatments (2.1‐ and 2.8‐fold faster than in the benthic‐hyporheic and hyporheic treatments, respectively). 4. Fungal assemblages were generally less diverse in the hyporheic habitat with a few species tending to be relatively favoured by such conditions. Both fungal biomass and sporulation rates were reduced in the hyporheic treatment, with the leaves subject to the benthic‐hyporheic treatment exhibiting an intermediate pattern. The initial 2‐week stage in the benthic habitat shaped the fungal assemblages, even for leaves later subjected to the hyporheic conditions. 5. The abundance and biomass of shredders drastically decreased with burial, except for Leuctra spp., which increased and was by far the most common leaf‐associated taxon in the hyporheic zone. Leuctra spp. was one of the rare shredder taxa displaying morphological characteristics that increased performance within the limited space of sediment interstices. 6. The carbon budgets indicated that the relative contributions of the two main decomposers, shredders and fungi, varied considerably depending on the location within the streambed. While the shredder biomass represented almost 50% of the initial carbon transformed after 80 days in the benthic treatment, its contribution was <0.3% in the hyporheic one and 2.0% in the combined benthic‐hyporheic treatment. In contrast, mycelial and conidial production in the permanently hyporheic environment accounted for 12% of leaf mass loss, i.e. 2–3 times more than in the two other conditions. These results suggest that the role of fungi is particularly important in the hyporheic zone. 7. Our findings indicate that burial within the substratum reduces the litter breakdown rate by limiting the access of both invertebrate and fungal decomposers to leaves. As a consequence, the hyporheic zone may be an important region of organic matter storage in woodland streams and serve as a fungal inoculum reservoir contributing to further dispersal. Through the temporary retention of litter by burial, the hyporheic zone must play a significant role in the carbon metabolism and overall functioning of headwater stream ecosystems.  相似文献   

8.
Due to conservation needs, reliable rapid-assessment methods for mapping of biodiversity are needed. One approach is to use surrogates, i.e. quantities that correlate strongly with the number of species, but are easier to obtain. The purpose of this paper is to test two polychaete surrogates, one for higher taxa and one for indicator groups, that will facilitate prediction of species richness in marine soft-bottom communities. Soft sediment is an important habitat which covers most of the ocean bottom. Data on polychaetes from the North Atlantic were used since polychaetes are often numerically dominant in the benthic assemblages, both with regard to the number of species and their abundance. In the polychaete assemblages along the Norwegian coast, richness at the genus, family and order level were significantly, linearly correlated to total species richness (r 0.92). Polychaetes in the order Terebellida were found to be a good indicator of polychaete species richness and to a lesser extent also of whole benthic assemblages. The group Terebellida is potentially well suited as an indicator group, since it contains long-lived, large species that are easy to sort from the sediment and it is well defined taxonomically. Although promising as proxies for species richness in marine biodiversity studies, the use of lower taxonomic resolution and indicator groups requires further investigations in more local areas where there are conservation issues.  相似文献   

9.
Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount--CSM) and a non-volcano (SM2) in the Andaman Back-arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only.  相似文献   

10.
The nature of the substratum is a fundamental factor determining the types of organisms and communities found in many terrestrial and benthic habitats. The extent to which this is true in extreme environments was investigated using bryozoan assemblages as model organisms in an Arctic fjord (Kongsfjorden 79°N, 12°E) in summer 2001 using SCUBA. Twenty-seven substrate samples of 0.25 m2 were taken at 10 m depth from the inner glacial basin to the mouth of the fjord. Multivariate analyses revealed four different bryozoan assemblages. The sea floor of the inner basin of Kongsfjorden near the glacial fronts was characterized by low diversity and dominance of the ctenostome species Alcyonidium disciforme Smitt. Highest richness and diversity occurred on rock substratum with mean size >10 cm2, on which the most common species was the pioneer Harmeria scutulata Busk (abundance: 15%). On smaller rocks with mean size <2 cm2, the runner-like pioneer species Electra arctica Borg comprised most individuals of the assemblage (98%). Yet another pioneer, Celleporella hyalina Linnaeus, was the most abundant species (49%) on substratum dominated by algae. Thus, in each habitat type, pioneers dominated but different species and to different extents. There was much variation in species composition and abundance within assemblages of heterogeneous habitats, and this study emphasizes the importance of microhabitats and physical conditions. Heterogeneity was evident at scales of <1 m.  相似文献   

11.
The boundaries of river systems: the metazoan perspective   总被引:9,自引:1,他引:8  
1. This overview of metazoans associated with the riparian/groundwater interface focuses on the fauna inhabiting substratum interstices within the stream bed and in alluvial aquifers beneath the floodplain. The objective is to integrate knowledge of habitat conditions and ecology of the interstitial fauna into a broad spatiotemporal perspective of lotic ecosystems. 2. Most aquatic metazoans of terrestrial ancestry, secondarily aquatic forms including insects and water mites (Hydracarina), are largely confined to surface waters (epigean), most of the time penetrating only the superficial interstices of the stream bed. 3. Primary aquatic metazoans include crustaceans and other groups whose entire evolutionary histories took place in water. Some species are epigean, whereas other members of the primary aquatic fauna are true subterranean forms (hypogean ) , residing deep within the stream bed and in alluvial aquifers some distance laterally from the channel. 4. The hypogean/epigean affinities of interstitial animals are reflected in repetitive gradients of species distribution patterns along vertical (depth within the stream bed), longitudinal (riffle/pool), and lateral (across the floodplain) spatial dimensions, as well as along recovery trajectories following floods (temporal dimension). 5. Fluvial dynamics and sediment characteristics interact to determine hydraulic conductivity, oxygen levels, pore space, particle size heterogeneity, organic content and other habitat conditions within the interstitial milieu. 6. Multidimensional environmental gradients occur at various scales across riparian/groundwater boundary zones. The spatiotemporal variability of hydrogeomorphological processes plays an important role in determining habitat heterogeneity, habitat stability, and connectivity between habitat patches, thereby structuring biodiversity patterns across the riverine landscape. 7. The erosive action of flooding maintains a diversity of hydrarch and riparian successional stages in alluvial floodplains. The patchy distribution patterns of interstitial communities at the floodplain scale reflect, in part, the spatial heterogeneity engendered by successional processes. 8. Interstitial metazoans engage in passive and active movements between surface waters and ground waters, between aquatic and riparian habitats, and between different habitat types within the lotic system. Some of these are extensive migrations that involve significant exchange of organic matter and energy between ecosystem compartments. 9. The generally high resilience of lotic ecosystems to disturbance is attributable, in part, to high spatiotemporal heterogeneity. Habitat patches less affected by a particular perturbation may serve as ’refugia ‘; from which survivors recolonize more severely affected areas. Mechanisms of refugium use may also occur within habitats, as, for example, through ontogenetic shifts in microhabitat use. Rigorous investigations of interstitial habitats as refugia should lead to a clearer understanding of the roles of disturbance and stochasticity in lotic ecosystems. 10. Development of realistic ’whole river ‘; food webs have been constrained by the exclusion of interstitial metazoans, which may in fact contribute the majority of energy flow in lotic ecosystems. A related problem is failure to include groundwater/riparian habitats as integral components of alluvial rivers. A conceptual model is presented that integrates groundwater and riparian systems into riverine food webs and that reflects the spatiotemporal complexity of the physical system and connectivity between different components. 11. Interstitial metazoans also serve as ’ecosystem engineers, ‘; by influencing the availability of resouces to other species and by modifying habitat conditions within the sediment. For example, by grazing on biofilm, interstitial animals may markedly stimulate bacterial growth rates and nutrient dynamics. 12. Although there has been a recent surge of interest in the role of interstitial animals in running waters, the knowledge gaps are vast. For example, basic environmental requirements of the majority of groundwater metazoans remain uninvestigated. Virtually nothing is known regarding the role of biotic interactions in structuring faunal distribution patterns across groundwater/riparian boundary zones. Interstitial metazoans may contribute significantly to the total productivity and energy flow of the biosphere, but such data are not available. Nor are sufficient data available to determine the contribution of groundwater animals to estimates of global biodiversity. 13. Effective ecosystem management must include groundwater/riparian ecotones and interstitial metazoans in monitoring and restoration efforts. Evidence suggests that a ’connected ‘; groundwater/riparian system provides natural pollution control, prevents clogging of sediment interstices and maintains high levels of habitat heterogeneity and successional stage diversity. River protection and restoration should maintain or re-establish at least a portion of the natural fluvial dynamics that sustains the ecological integrity of the entire riverine–floodplain–aquifer ecosystem. Keywords: groundwater/riparian ecotones, hyporheic habitat, epigean, hypogean, interstitial fauna, biodiversity, food webs  相似文献   

12.
We compared the responsiveness of macroinvertebrate assemblages to variation in water quality (ions, nutrients, dissolved metals, and suspended sediment) in two mesohabitats within the main channel of three North American great rivers, the Upper Mississippi, Missouri, and Ohio. Based on about 400 paired samples, we examined the responsiveness of benthic assemblages sampled in the littoral zone and assemblages sampled from the surface of woody snags in the main channel. The assemblages in the two mesohabitats were different in all rivers. Taxa richness was much higher in the benthos than on snags. Macroinvertebrate assemblage response to water quality variation was weak on the Mississippi River, but the reasons for this are unknown. Based on analysis of the similarity between the composition of assemblages from groups of sites with high and low concentrations of water quality variables, benthic assemblages were only slightly more sensitive to water chemistry variation than were snag assemblages. Results of two-sample comparisons between groups of sites with high and low concentrations of water quality variables were consistent with rank correlations of assemblage metrics with water quality. In general, there was little difference between habitats in response to variation in water quality on any river. Our simple method of snag sampling in great rivers is usually much easier than littoral benthic sampling because it does not require wading. Snag sampling in large rivers has some limitations (e.g., natural snags are sometimes absent, samples are semi-quantitative), but lack of sensitivity to water quality gradients compared to the benthos is not among them.  相似文献   

13.

The green macroalga Caulerpa filiformis has been spreading on shallow soft sediment habitats along the Peruvian coast, colonizing previously unvegetated sediments to create monospecific meadows. We examined the nature of the impact of C. filiformis meadows on the density, taxonomic richness and assemblage structure of epifaunal and infaunal benthic macroinvertebrates. Specifically, we tested whether the spread of C. filiformis has resulted in different macroinvertebrate assemblages than those formed by the dominant native macroalgae (i.e., Rhodymenia spp.) and unvegetated sediments. Surveys were undertaken in two bays in each of two locations, in central and southern Peru, during winter 2017 and summer 2018. In general, our results show that macroinvertebrate assemblages were similar across all three habitats, although there were some differences, related to location and time, but with no clear patterns observed. Taxonomic richness and density was generally higher in the vegetated habitats than the unvegetated habitat, and where there were differences between the two vegetated habitats there was no consistent pattern of which habitat supported the highest richness or density. Given invading C. filiformis is primarily colonizing unvegetated habitats it would appear that this species is creating a new niche which supports similar assemblages, but higher taxonomic richness and density than unvegetated habitats. While our study suggests that C. filiformis is having a limited ecological impact we recommend that actions be put in place to limit the spread of this invasive species at the same time as increasing monitoring of the ecological impacts of this species as lags in the ecological impacts of invasive species are common.

  相似文献   

14.
This study examines distributional patterns of benthic diatom assemblages in relation to environmental characteristics in streams and rivers in the California Central Valley ecoregion. Benthic diatoms, water quality, and physical habitat conditions were characterized from 53 randomly selected sites. The stream sites were characterized by low mid-channel canopy cover and high channel substrate embeddedness. The waters at these sites were enriched with minerals and turbidity varied from 1.3 to 185.0 NTU with an average of 13.5 NTU. A total of 249 diatom taxa were identified. Average taxa richness was 41 with a range of 7–76. The assemblages were dominated by Staurosira construens (11%), Epithemia sorex (8%), Cocconeis placentula (7%), and Nitzschia amphibia (6%). Multivariate analyses (cluster analysis, classification tree analysis, and canonical correspondence analysis) all showed that benthic diatom assemblages were mainly affected by channel morphology, in-stream habitat, and riparian conditions. The 1st CCA axis negatively correlated with mean wetted channel width (r = −0.66) and thalweg depth (r = −0.65) (Table 4). The 2nd axis correlated with % coarse substrates (r=0.60). Our results suggest that benthic diatoms can be used for assessing physical habitat alterations in streams.  相似文献   

15.
The interstitial stygobiont distributions of two rivers in the western High Atlas is analyzed in relation with sediment granulometry. Sixteen stations were sampled along the rivers N'Fis and Zat and their tributaries. Granulometry analyses were performed. Three grain size sediment types constitute the subterranean biotopes and reflect the local hydrodynamical conditions. The main rivers stations, which undergo frequent natural or human disturbances, are characterized by a high content of fine sediment; in contrast, tributaries stations show coarse and well-classified sediments due to more stable biotopes and more regular hydrological conditions. The 92 taxa group 28 stygobiontic species with 11 crustaceans species. PCA. based on 16 stations, three faunistic richness indexes and three granulometric factors display a high correlation between coarse grain-size content and the richness of stygobiontic taxa. A high silt content both limits the interstitial taxa and excludes crustaceans that occur only in coarse gravels. The granulometric preferenda in the species of the amphipod genus Metacrangonyx and isopods Microcerberus. Microcharon and Typhlocirolana are shown on Shepard triangular diagrams. Cohabitation of several species of the same genus could be explained by the occupancy of different ecological niches resulting from the grain-size proportion.  相似文献   

16.
Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.  相似文献   

17.
1. A large proportion of the total river length on Earth comprises rivers that are temporary in nature. However, the effects of periodical dry events have received far less attention from ecologists than those of floods and low flows. 2. This study concomitantly examined the effects of flow intermittence on invertebrates from the streambed surface and from a depth of 30 cm in the hyporheic zone. Invertebrates were collected during 3 years in the Albarine River, France, before and after summer dry events from 18 sites (seven were perennial) distributed along a longitudinal flow intermittence gradient. 3. I predicted benthic and hyporheic density and taxonomic richness to decrease, and assemblage composition to shift from desiccation‐sensitive to desiccation‐resistant taxa with increased dry event duration. Second, I predicted benthic and hyporheic assemblages from sites that dried for longer periods to be nested subsets of assemblages from sites that dried for shorter periods. Last, I predicted a convergence in benthic and hyporheic assemblage composition with increasing duration of dry events, resulting from increased vertical migration of benthic taxa into the hyporheic sediments to cope with dry events. 4. Increased dry event duration in the Albarine River led to a decrease in both benthic and hyporheic density and taxonomic richness. Invertebrate assemblage composition shifted along the gradient of increasing flow intermittence, but broad taxonomic overlap between perennial and temporary reaches and nestedness patterns indicated that these shifts were because of the loss of taxa susceptible to drying rather than selection for desiccation‐resistant specialists. 5. Assemblage composition between benthic and hyporheic invertebrates diverged with increasing dry event duration, suggesting that the hyporheic zone did not act as a refuge during dry events in this river. 6. Quantitative studies on the relationships between ecology and intermittence are still rare but are needed to predict the consequences of future changes in flow intermittence. The relationships found in this study should be tested across a wide range of temporary rivers to better evaluate the generality of these findings.  相似文献   

18.
19.
A field study was designed to concurrently evaluate differences in colonization by benthic macroinvertebrates on a range of artificial substratum types (single particles of natural rock or clay brick and baskets of natural substratum) after three colonization periods (1, 8 and 29 days). Fauna on the artificial substrata were compared to natural substratum and the effect of natural epilithic cover on colonization by zoobenthos was determined. Densities of total number of organisms and the seven most abundant taxa, total number of taxa and quantity of organic material were greater on the natural substratum than on the artificial substratum types. Relative abundances of taxa on pairs of the artificial substratum types, unlike pairs of each artificial substratum type and the natural substratum, were statistically correlated. Among the artificial substratum types densities of total number of organisms and about one-half of the most abundant taxa, total number of taxa and quantity of organic material were greatest in the substratum baskets. Natural epilithic cover on the single rock particles and substratum baskets affected the densities of total number of organisms and two of the seven most abundant taxa. These taxonomic groups were at approximately two to six-fold greater densities on the substrata with fine sediment. consistent patterns in densities of the zoobenthos on the substrata were found after each colonization period. In our study all measures of the macroinvertebrate assemblages (densities of each taxon, total number of organisms, total number of taxa and relative abundances of taxa), with few exceptions, were different between each artificial substratum type and natural substratum. This result showed the abundance and composition of the macroinvertebrate fauna on artificial substratum types were different from the natural substratum. Therefore, the choice of using artificial substrata instead of direct sampling of the natural substratum should be carefully made. Among the artificial substratum types relative abundances of taxa were similar on the single substratum particles and substratum baskets indicating single particles instead of baskets might be used to sample the zoobenthos. Investigators should consider the potential effect of the natural epilithic cover of substratum particles on colonization by zoobenthos when choosing the type of artificial substratum.  相似文献   

20.
The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenisation of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle heads and tails. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号