首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Wheat is the most important cereal in the world in terms of acreage and productivity. We sequenced and assembled the plastid genome of one Egyptian wheat cultivar using next-generation sequence data. The size of the plastid genome is 133,873 bp, which is 672 bp smaller than the published plastid genome of “Chinese Spring” cultivar, due mainly to the presence of three sequences from the rice plastid genome. The difference in size between the previously published wheat plastid genome and the sequence reported here is due to contamination of the published genome with rice plastid DNA, most of which is present in three sequences of 332, 131 and 131 bp. The corrected plastid genome of wheat has been submitted to GenBank (accession number KJ592713) and can be used in future comparisons.  相似文献   

4.
何勇  罗岸  母连胜  陈强  张艳  叶开温  田志宏 《遗传》2017,39(9):810-827
与细胞核基因工程相比,质体基因工程能更安全、精确和高效地对外源基因进行表达,作为下一代转基因技术已广泛用于基础研究和生物技术应用领域。与细胞核基因工程一样,质体基因工程中也需要合适的选择标记基因用于转化子的筛选和同质化,但基于质体基因组的多拷贝性和母系遗传特点,转化子的同质化需要一个长期的筛选过程,这就决定了质体基因工程中选择标记基因的选择标准将不同于细胞核基因工程中广泛使用的现行标准。目前,质体基因工程的遗传转化操作中使用较多的是抗生素选择标记基因,出于安全性考虑,需要找到可替换、安全的选择标记基因或有效的标记基因删除方法。本文在对质体基因工程研究的相关文献分析基础之上,对主要使用的选择标记基因及其删除体系进行了综述,并对比了其优缺点,同时探讨了质体基因工程中所使用的报告基因,以期为现有选择标记基因及其删除体系的改进和开发提供一定参考,进一步推动质体基因工程,尤其是单子叶植物质体基因工程的发展。  相似文献   

5.
Our objective was to test whether or not cyclization recombination (CRE), the P1 phage site-specific recombinase, induces genome rearrangements in plastids. Testing was carried out in tobacco plants in which a DNA sequence, located between two inversely oriented locus of X-over of P1 (loxP) sites, underwent repeated cycles of inversions as a means of monitoring CRE activity. We report here that CRE mediates deletions between loxP sites and plastid DNA sequences in the 3'rps12 gene leader (lox-rps12) or in the psbA promoter core (lox-psbA). We also observed deletions between two directly oriented lox-psbA sites, but not between lox-rps12 sites. Deletion via duplicated rRNA operon promoter (Prrn) sequences was also frequent in CRE-active plants. However, CRE-mediated recombination is probably not directly involved, as no recombination junction between loxP and Prrn could be observed. Tobacco plants carrying deleted genomes as a minor fraction of the plastid genome population were fertile and phenotypically normal, suggesting that the absence of deleted genome segments was compensated by gene expression from wild-type copies. The deleted plastid genomes disappeared in the seed progeny lacking CRE. Observed plastid genome rearrangements are specific to engineered plastid genomes, which contain at least one loxP site or duplicated psbA promoter sequences. The wild-type plastid genome is expected to be stable, even if CRE is present in the plastid.  相似文献   

6.
7.
Plant cells have acquired chloroplasts (plastids) with a unique genome (ptDNA), which developed during the evolution of endosymbiosis. The gene content and genome structure of ptDNAs in land plants are considerably stable, although those of algal ptDNAs are highly varied. Plant cells seem, therefore, to be intolerant of any structural or organizational changes in the ptDNA. Genome rearrangement functions as a driver of genomic evolutionary divergence. Here, we aimed to create various types of rearrangements in the ptDNA of Arabidopsis genomes using plastid‐targeted forms of restriction endonucleases (pREs). Arabidopsis plants expressing each of the three specific pREs, i.e., pTaqI, pHinP1I, and pMseI, were generated; they showed the leaf variegation phenotypes associated with impaired chloroplast development. We confirmed that these pREs caused double‐stranded breaks (DSB) at their recognition sites in ptDNAs. Genome‐wide analysis of ptDNAs revealed that the transgenic lines exhibited a large number of rearrangements such as inversions and deletions/duplications, which were dominantly repaired by microhomology‐mediated recombination and microhomology‐mediated end‐joining, and less by non‐homologous end‐joining. Notably, pHinP1I, which recognized a small number of sites in ptDNA, induced drastic structural changes, including regional copy number variations throughout ptDNAs. In contrast, the transient expression of either pTaqI or pMseI, whose recognition site numbers were relatively larger, resulted in small‐scale changes at the whole genome level. These results indicated that DSB frequencies and their distribution are major determinants in shaping ptDNAs.  相似文献   

8.
The complete nucleotide sequence of the plastid genome of the unicellular primitive red alga Cyanidioschyzon merolae 10D (Cyanidiophyceae) was determined. The genome is a circular DNA composed of 149,987 bp with no inverted repeats. The G + C content of this plastid genome is 37.6%. The C. merolae plastid genome contains 243 genes, which are distributed on both strands and consist of 36 RNA genes (3 rRNAs, 31 tRNAs, tmRNA, and a ribonuclease P RNA component) and 207 protein genes, including unidentified open reading frames. The striking feature of this genome is the high degree of gene compaction; it has very short intergenic distances (approximately 40% of the protein genes were overlapped) and no genes have introns. This genome encodes several genes that are rarely found in other plastid genomes. A gene encoding a subunit of sulfate transporter (cysW) is the first to be identified in a plastid genome. The cysT and cysW genes are located in the C. merolae plastid genome in series, and they probably function together with other nuclear-encoded components of the sulfate transport system. Our phylogenetic results suggest that the Cyanidiophyceae, including C. merolae, are a basal clade within the red lineage plastids.  相似文献   

9.
近年来, 随着测序技术的发展, 石松类和蕨类植物的核基因组、质体基因组以及线粒体基因组研究发展迅速, 质体基因组研究工作更是呈爆发式增长。截至2019年3月1日, GenBank公布的石松类和蕨类植物的175个质体基因组中, 约3/4为最近两年新增。研究内容从早期对个别质体基因组结构和序列特征的简单报道, 逐渐发展到综合性的比较基因组学和系统发育基因组学研究。目前已发表的质体基因组覆盖了石松类和蕨类植物的所有目和大部分科, 这两大类群的质体基因组结构变异和系统发育的基本框架已逐渐清晰。这些研究为我们理解维管植物的早期演化提供了重要参考。本文对石松类和蕨类植物的质体基因组结构特征进行了系统梳理, 发现其结构变异主要包括大片段倒位、IR区边界变动、基因或内含子丢失等, 其中一些结构变异可作为较高分类阶元的共衍征。RNA编辑和长片段非编码序列插入普遍存在于石松类和蕨类植物的质体基因组中, 但其起源、演化机制和功能等仍不清楚。我们对质体基因组的应用、系统发育研究中质体和核基因组的优劣性, 以及系统发育基因组学的前景进行了评述。  相似文献   

10.
The plastid ribisomal RNA (rRNA) operon of the achlorophyllous root parasite Conopholis americana was completely sequenced. Full-length rRNA genes are retained in the gene cluster, but significant divergence has occurred in the 16S, 23S and 5S genes. Both the 16S–23S intergenic spacer and the 4.5S–5S intergenic spacer have suffered substantial deletions, including the two tRNA genes typically found in prokaryotic and plastid 16S–23S spacers.  相似文献   

11.
Pairwise comparison of whole plastid and draft nuclear genomic sequences of Arabidopsis thaliana and Oryza sativa L. ssp. indica shows that rice nuclear genomic sequences contain homologs of plastid DNA covering about 94 kb (83%) of plastid genome and including one or more full-length intact (without mutations resulting in premature stop codons) homologues of 26 known protein-coding (KPC) plastid genes. By contrast, only about 20 kb (16%) of chloroplast DNA, including a single intact plastid-derived KPC gene, is presented in the nucleus of A. thaliana. Sixteen rice plastid genes have at least one nuclear copy without any mutation or with only synonymous substitutions. Nuclear copies for other ten plastid genes contain both synonymous and non-synonymous substitutions. Multiple ESTs for 25 out of 26 KPC genes were also found, as well as putative promoters for some of them. The study of substitutions pattern shows that some of nuclear homologues of plastid genes may be functional and/or are under the pressure of the positive natural selection. The similar comparative analysis performed on rice chromosome 1 revealed 27 contigs containing plastid-derived sequences, totalling about 84 kb and covering two thirds of chloroplast DNA, with the intact nuclear copies of 26 different KPC genes. One of these contigs, AP003280, includes almost 57 kb (45%) of chloroplast genome with the intact copies of 22 KPC genes. At the same time, we observed that relative locations of homologues in plastid DNA and the nuclear genome are significantly different.  相似文献   

12.
We present the 174,935 nt long plastid genome of the red alga Laurencia sp. JFC0032. It is the third plastid genome characterized for the largest order of red algae (Ceramiales). The circular‐mapping plastid genome is small compared to most florideophyte red algae, and our comparisons show a trend toward smaller plastid genome sizes in the family Rhodomelaceae, independent from a similar trend in Cyanidiophyceae. The Laurencia genome is densely packed with 200 annotated protein‐coding genes (188 widely conserved, 3 open reading frames shared with other red algae and 9 hypothetical coding regions). It has 29 tRNAs, a single‐copy ribosomal RNA cistron, a tmRNA, and the RNase P RNA.  相似文献   

13.
14.
Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non‐photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage.  相似文献   

15.
Incorporation of a selectable marker gene during transformation is essential to obtain transformed plastids. However, once transformation is accomplished, having the marker gene becomes undesirable. Here we report on adapting the P1 bacteriophage CRE-lox site-specific recombination system for the elimination of marker genes from the plastid genome. The system was tested by the elimination of a negative selectable marker, codA, which is flanked by two directly oriented lox sites (>codA>). Highly efficient elimination of >codA> was triggered by introduction of a nuclear-encoded plastid-targeted CRE by Agrobacterium transformation or via pollen. Excision of >codA> in tissue culture cells was frequently accompanied by a large deletion of a plastid genome segment which includes the tRNA-ValUAC gene. However, the large deletions were absent when cre was introduced by pollination. Thus pollination is our preferred protocol for the introduction of cre. Removal of the >codA> coding region occurred at a dramatic speed, in striking contrast to the slow and gradual build-up of transgenic copies during plastid transformation. The nuclear cre gene could subsequently be removed by segregation in the seed progeny. The modified CRE-lox system described here will be a highly efficient tool to obtain marker-free transplastomic plants.  相似文献   

16.
Seeds of the lethal embryo 1 (lem1) mutant in maize (Zea mays) display a non-concordant lethal phenotype: whereas the embryo aborts very early, before the transition stage, the endosperm develops almost normally. The mutant was identified in a collection of maize lines that carried the transposon Activation (Ac) at different locations in the genome. Co-segregation and reversion analysis showed that lem1 was tagged by Ac. The lem1 gene encodes a protein that is highly similar to the rice plastid 30S ribosomal protein S9 (PRPS9). lem1 maps to chromosome 1L and appears to be the only copy of prps9 in the maize genome. Green fluorescent protein (GFP) fusion constructs containing only the putative transit peptide (TP) of LEM1 localize exclusively to the plastids, confirming that the LEM1 protein is a PRP. In contrast, GFP fusion constructs containing the entire LEM1 protein co-localize to the plastids and to the nucleus, suggesting a possible dual function for this protein. Two alternative, although not mutually exclusive, explanations are considered for the lem phenotype of the lem1 mutant: (i) functional plastids are required for normal embryo development; and (ii) the PRPS9 has an extra-ribosomal function required for embryogenesis.  相似文献   

17.
Applications of chloroplast engineering in agriculture and biotechnology will depend critically on success in extending the crop range of chloroplast transformation, and on the feasibility of expressing transgenes in edible organs (such as tubers and fruits), which often are not green and thus are much less active in chloroplast gene expression. We have improved a recently developed chloroplast-transformation system for tomato plants and applied it to engineering one of the central metabolic pathways in fruits: carotenoid biosynthesis. We report that plastid expression of a bacterial lycopene beta-cyclase gene results in herbicide resistance and triggers conversion of lycopene, the main storage carotenoid of tomatoes, to beta-carotene, resulting in fourfold enhanced pro-vitamin A content of the fruits. Our results demonstrate the feasibility of engineering nutritionally important biochemical pathways in non-green plastids by transformation of the chloroplast genome.  相似文献   

18.
Serial transfer of plastids from one eukaryotic host to another is the key process involved in evolution of secondhand plastids. Such transfers drastically change the environment of the plastids and hence the selection regimes, presumably leading to changes over time in the characteristics of plastid gene evolution and to misleading phylogenetic inferences. About half of the dinoflagellate protists species are photosynthetic and unique in harboring a diversity of plastids acquired from a wide range of eukaryotic algae. They are therefore ideal for studying evolutionary processes of plastids gained through secondary and tertiary endosymbioses. In the light of these processes, we have evaluated the origin of 2 types of dinoflagellate plastids, containing the peridinin or 19'-hexanoyloxyfucoxanthin (19'-HNOF) pigments, by inferring the phylogeny using "covarion" evolutionary models allowing the pattern of among-site rate variation to change over time. Our investigations of genes from secondary and tertiary plastids derived from the rhodophyte plastid lineage clearly reveal "heterotachy" processes characterized as stationary covarion substitution patterns and changes in proportion of variable sites across sequences. Failure to accommodate covarion-like substitution patterns can have strong effects on the plastid tree topology. Importantly, multigene analyses performed with probabilistic methods using among-site rate and covarion models of evolution conflict with proposed single origin of the peridinin- and 19'-HNOF-containing plastids, suggesting that analysis of secondhand plastids can be hampered by convergence in the evolutionary signature of the plastid DNA sequences. Another type of sequence convergence was detected at protein level involving the psaA gene. Excluding the psaA sequence from a concatenated protein alignment grouped the peridinin plastid with haptophytes, congruent with all DNA trees. Altogether, taking account of complex processes involved in the evolution of dinoflagellate plastid sequences (both at the DNA and amino acid level), we demonstrate the difficulty of excluding independent, tertiary origin for both the peridinin and 19'-HNOF plastids involving engulfment of haptophyte-like algae. In addition, the refined topologies suggest the red algal order, Porphyridales, as the endosymbiont ancestor of the secondary plastids in cryptophytes, haptophytes, and heterokonts.  相似文献   

19.
20.
Background and Aims Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species.Methods Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices.Key Results The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species.Conclusions In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with plastid DNA did not help to resolve the phylogenetic tree because the total number of variable sites was much lower than in the entire plastid genome. The geographical clustering of the individuals against a background of overall low sequence divergence could indicate transfer of plastid genomes due to hybridization and introgression following secondary contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号