首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Remodeling of joints is a key feature of inflammatory and degenerative joint disease. Bone erosion, cartilage degeneration and growth of bony spurs termed osteophytes are key features of structural joint pathology in the course of arthritis, which lead to impairment of joint function. Understanding their molecular mechanisms is essential to tailor targeted therapeutic approaches to protect joint architecture from inflammatory and mechanical stress. This addendum summarizes the new insights in the molecular regulation of bone formation in the joint and its relation to bone resorption. It describes how inflammatory cytokines impair bone formation and block the repair response of joints towards inflammatory stimuli. It particularly points out the key role of Dickkopf-1 protein, a regulator of the Wingless signaling and inhibitor of bone formation. This new link between inflammation and bone formation is also crucial for explaining the generation of osteophytes, bony spurs along joints, which are characterized by new bone and cartilage formation. This mechanism is largely dependent on an activation of wingless protein signaling and can lead to complete joint fusion. This addendum summarized the current concepts of joint remodeling in the limelight of these new findings.Key words: joint remodeling, arthritis, bone formation, bone erosion, osteoblasts, osteoclasts, Dickkopf, wingless proteinsJoints face profound remodeling in the course of arthritis. In humans, pathologic joint remodeling manifests as (i) destruction of joints due to bone erosion (rheumatoid arthritis), (ii) fusion of joints due to formation of bony spurs such as osteophytes, spondylophytes and syndesmophytes (ankylosing spondylitis) or (iii) a mixture of both changes (psoriatic arthritis). The molecular mechanisms determining these different forms of joint remodeling are not fully clarified, Insights in these mechanisms however are a clue to a deeper understanding of the architectural changes of human joints.Similar to systemic bone turnover, which most is most prominent in the trabecular bone compartment of the spine and long bones, joints are hot spots of bone remodeling during inflammatory disease. Cytokines expressed by inflammatory cells in the synovial membrane regulate local bone homeostasis and enable to remodel joints during disease—a process which can either lead to crippling and functional loss or to fusion and stabilization of the affected joint. Rheumatoid arthritis is characterized by bone erosions, which are the result of an enhanced bone resorption. In rheumatoid arthritis osteoclasts, the primary bone resorbing cells, accumulate and degrade the periarticular bone as well as the mineralized cartilage.1 Molecularly increased osteoclast formation is based on the expression of macrophage colony-stimulating factor (MCSF) and receptor-antagonist of NFκB ligand (RANKL) in the synovial tissue, which both drive the differentiation of osteoclasts from monocytic precursors.24 Osteoclasts are specialized cells to resorb bone and their local accumulation in the joint leads to a catabolic state, which by far outweighs bone formation resulting in a negative net effect of bone remodeling. Inflammatory cytokines, such as TNF, IL-1, IL-6 and IL-17 induce osteoclast formation by enhancing the expression of RANKL and promoting differentiation of osteoclast precursor cells to mature osteoclasts.58 Abundance of proinflammatory cytokines in the synovial membrane of patients with RA, their induction of molecules involved in osteoclast formation and the influx of monocytes/macrophages serving as osteoclast precursor cells represent ideal prerequisites for osteoclast formation in joints.9The fact that appropriate repair strategies are virtually absent in patients with RA and that bone is hardly rebuilt when bone erosions have emerged, suggests activation of molecular signals, which blunt bone formation. Bone formation itself is regulated by growth factors and hormones, which stimulate differentiation and activity of osteoblasts. Typical regulators of bone formation constitute parathyroid hormone, prostaglandins, bone morphogenic proteins (BMPs) and wingless proteins (Wnt). Particularly the role of Wnt proteins in bone formation have achieved growing interest during the past few years, leading to identification of the LRP5/6 receptor as a key molecule for anabolic skeletal responses. Wnt proteins bind to the LRP5/6 receptor and lead to activation of a signal pathway involving GSK3 and β-catenin, which drive differentiation of mesenchymal cells into osteoblastogenesis.10 Regulators of Wnt- induced bone formation are Dickkopf (DKK) proteins, which competitively bind to LRP5/6 and prevent signaling activation by additionally engaging a negative coreceptor termed Kremen-1.11,12 DKK proteins thus regulate bone homeostasis by interference with Wnt signaling.13We recently showed that inflammatory cytokines such as TNF induce DKK-1, a member of the DKK- family, which inhibits Wnt signaling. DKK-1 is highly expressed in inflammatory lesions of experimental arthritis and human rheumatoid arthritis.14 Moreover, increased levels can be detected in the serum of patients with RA, which depend on TNF. This is supported by the normalization of elevated DKK-1 levels in RA patients upon initiation of systemic TNF- blockade. Inhibition of DKK-1 in mice completely abolishes bone erosions in different models of experimental arthritis and leads to increased bone growth, which manifests as osteophyte formation in the joint.DKK-1 links the inflammation with bone formation as RANKL links inflammation with bone resorption. The fact that TNF and presumably also other inflammatory mediators induce both proteins explains the profound negative effect of inflammation on bone. Inflammation uncouples the balance between bone resorption and formation, enhancing the former by inducing RANKL and by repressing the latter by DKK-1. Also appears to be a tight cross talk between the Wnt- and RANKL-pathways.15 Inhibition of DKK-1 in arthritic mice lead to protection from bone erosions and osteoclasts did not appropriately form. This effect is based on the induction of osteoprotegerin (OPG) a natural decoy receptor for RANKL, which blocks RANKL and thus osteoclast formation. OPG is induced by Wnt proteins and shifts the balance from bone resorption to bone formation.In contrast to rheumatoid arthritis joints in ankylosing spondylitis and also in degenerative joint disease (osteoarthritis) show an attempt towards joint fusion rather than joint destruction. These bony spurs are the result of endochondral bone formation starting from the periosteum close to the joints, where osteoblasts differentiate build up bone matrix. We could demonstrate that Wnt proteins are crucially involved in this process since inhibition of DKK-1 lead to emergence of osteophytes and even complete fusion of joints. Taken together these data suggest that the balance of the Wnt/DKK system determines the remodeling of joints by governing bone destruction as well as osteophyte formation in joints (Fig. 1).Open in a separate windowFigure 1Patterns of joint remodeling.  相似文献   

2.
3.

Background

Cellular plasticity and complex functional requirements of the periodontal ligament (PDL) assume a local stem cell (SC) niche to maintain tissue homeostasis and repair. Here, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. As bone homeostasis is fundamentally controlled by Wnt-mediated signals, it was the aim of this study to characterize the SC-like capacities of cells derived from PDL and to investigate their involvement in bone pathophysiology especially regarding the canonical Wnt pathway.

Methods

PDLSCs were investigated for their SC characteristics via analysis of cell surface marker expression, colony forming unit efficiency, proliferation, osteogenic differentiation and adipogenic differentiation, and compared to bone marrow derived mesenchymal SCs (BMMSCs). To determine the impact of both inflammation and the canonical Wnt pathway on osteogenic differentiation, cells were challenged with TNF-α, maintained with or without Wnt3a or DKK-1 under osteogenic induction conditions and investigated for p-IκBα, p-NF-κB, p-Akt, β-catenin, p-GSK-3β, ALP and Runx2.

Results

PDLSCs exhibit weaker adipogenic and osteogenic differentiation capacities compared to BMMSCs. TNF-α inhibited osteogenic differentiation of PDLSCs more than BMMSCs mainly through regulating canonical Wnt pathway. Blocking the canonical Wnt pathway by DKK-1 reconstituted osteogenic differentiation of PDLSCs under inflammatory conditions, whereas activation by Wnt3a increased osteogenic differentiation of BMMSCs.

Conclusions

Our results suggest a diverse regulation of the inhibitory effect of TNF-α in BMMSCs and PDLSCs via canonical Wnt pathway modulation.

General significance

These findings provide novel insights on PDLSC SC-like capacities and their involvement in bone pathophysiology under the impact of the canonical Wnt pathway.  相似文献   

4.
Ankylosing spondylitis (AS) refers to a type of arthritis manifested with chronic inflammation of spine joints. microRNAs (MiRNAs) have been identified as new therapeutic targets for inflammatory diseases. In this study, we evaluated the influence of microRNA-96 (miR-96) on osteoblast differentiation together with bone formation in a murine model of AS. The speculated relationship that miR-96 could bind to sclerostin (SOST) was verified by dual luciferase reporter assay. After successful model establishment, the mice with AS and osteoblasts isolated from mice with AS were treated with mimics or inhibitors of miR-96, or DKK-1 (a Wnt signaling inhibitor). The effects of gain- or loss-of-function of miR-96 on the inflammatory cytokine release (IL-6, IL-10, and TNF-α), alkaline phosphatase (ALP) activity, calcium nodule formation, along with the viability of osteoblasts were determined. It was observed that miR-96 might target and regulate SOST. Besides, miR-96 was expressed at a high level in AS mice while SOST expressed at a low level. TOP/FOP-Flash luciferase reporter assay confirmed that miR-96 activated the Wnt signaling pathway. Moreover, AS mice overexpressing miR-96 exhibited increased contents of IL-6, IL-10 and TNF-α, ALP activity, calcium nodule numbers, and viability of osteoblasts. In contrast, inhibition of miR-96 resulted in suppression of the osteoblast differentiation and bone formation. In conclusion, the study implicates that overexpressing miR-96 could improve osteoblast differentiation and bone formation in AS mice via Wnt signaling pathway activation, highlighting a potential new target for AS treatment.  相似文献   

5.
Prostate cancer (CaP) is unique among all cancers in that when it metastasizes to bone, it typically forms osteoblastic lesions (characterized by increased bone production). CaP cells produce many factors, including Wnts that are implicated in tumor-induced osteoblastic activity. In this prospectus, we describe our research on Wnt and the CaP bone phenotype. Wnts are cysteine-rich glycoproteins that mediate bone development in the embryo and promote bone production in the adult. Wnts have been shown to have autocrine tumor effects, such as enhancing proliferation and protecting against apoptosis. In addition, we have recently identified that CaP-produced Wnts act in a paracrine fashion to induce osteoblastic activity in CaP bone metastases. In addition to Wnts, CaP cells express the soluble Wnt inhibitor dickkopf-1 (DKK-1). It appears that DKK-1 production occurs early in the development of skeletal metastases, which results in masking of osteogenic Wnts, thus favoring osteolysis at the metastatic site. As metastases progress, DKK-1 expression decreases allowing for unmasking of Wnt's osteoblastic activity and ultimately resulting in osteosclerosis at the metastatic site. We believe that DKK-1 is one of the switches that transitions the CaP bone metastasis activity from osteolytic to osteoblastic. Wnt/DKK-1 activity fits a model of CaP-induced bone remodeling occurring in a continuum composed of an osteolytic phase, mediated by receptor activator of NFkB ligand (RANKL), parathyroid hormone-related protein (PTHRP) and DKK-1; a transitional phase, where environmental alterations promote expression of osteoblastic factors (Wnts) and decreases osteolytic factors (i.e., DKK-1); and an osteoblastic phase, in which tumor growth-associated hypoxia results in production of vascular endothelial growth factor and endothelin-1, which have osteoblastic activity. This model suggests that targeting both osteolytic activity and osteoblastic activity will provide efficacy for therapy of CaP bone metastases.  相似文献   

6.

Introduction

Inflammatory arthritis is associated with increased bone resorption and suppressed bone formation. The Wnt antagonist dickkopf-1 (DKK1) is secreted by synovial fibroblasts in response to inflammation and this protein has been proposed to be a master regulator of bone remodelling in inflammatory arthritis. Local glucocorticoid production is also significantly increased during joint inflammation. Therefore, we investigated how locally derived glucocorticoids and inflammatory cytokines regulate DKK1 synthesis in synovial fibroblasts during inflammatory arthritis.

Methods

We examined expression and regulation of DKK1 in primary cultures of human synovial fibroblasts isolated from patients with inflammatory arthritis. The effect of TNFα, IL-1β and glucocorticoids on DKK1 mRNA and protein expression was examined by real-time PCR and ELISA. The ability of inflammatory cytokine-induced expression of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to sensitise fibroblasts to endogenous glucocorticoids was explored. Global expression of Wnt signalling and target genes in response to TNFα and glucocorticoids was assessed using a custom array.

Results

DKK1 expression in human synovial fibroblasts was directly regulated by glucocorticoids but not proinflammatory cytokines. Glucocorticoids, but not TNFα, regulated expression of multiple Wnt agonists and antagonists in favour of inhibition of Wnt signalling. However, TNFα and IL-1β indirectly stimulated DKK1 production through increased expression of 11β-HSD1.

Conclusions

These results demonstrate that in rheumatoid arthritis synovial fibroblasts, DKK1 expression is directly regulated by glucocorticoids rather than TNFα. Consequently, the links between synovial inflammation, altered Wnt signalling and bone remodelling are not direct but are dependent on local activation of endogenous glucocorticoids.  相似文献   

7.
Structural changes of bone and cartilage are a hallmark of inflammatory joint diseases such as rheumatoid arthritis (RA), psoriatic arthritis (PsA), and ankylosing spondylitis (AS). Despite certain similarities - in particular, inflammation as the driving force for structural changes - the three major inflammatory joint diseases show considerably different pathologies. Whereas RA primarily results in bone and cartilage resorption, PsA combines destructive elements with anabolic bone responses, and AS is the prototype of a hyper-responsive joint disease associated with substantial bone and cartilage apposition. In the present review we summarize the clinical picture and pathophysiologic processes of bone and cartilage damage in RA, PsA, and AS, we describe the key insights obtained from the introduction of TNF blockade, and we discuss the future challenges and frontiers of structural damage in arthritis.  相似文献   

8.
Lee YR  Hwang JK  Koh HW  Jang KY  Lee JH  Park JW  Park BH 《Life sciences》2012,90(19-20):799-807
AimSulfuretin, a major flavonoid isolated from Rhus verniciflua, is known to have anti-inflammatory effects. However, the mechanisms underlying the anti-inflammatory effect of sulfuretin on rheumatoid arthritis have not been elucidated. In this study we investigated whether sulfuretin treatment modulates the severity of arthritis in an experimental model.Main methodsWe evaluated the effects of sulfuretin on tumor necrosis factor-α (TNF-α)-treated human rheumatoid fibroblast-like synoviocytes (FLS) in vitro and on collagen-induced arthritis (CIA) mice in vivo.Key findingsIn vitro experiments demonstrated that sulfuretin suppressed the chemokine production, matrix metalloproteinase secretion, and cell proliferation induced by tumor necrosis factor-α in rheumatoid FLS. In addition, sulfuretin inhibited the osteoclast differentiation induced by macrophage colony-stimulating factor and receptor activator of NF-κB ligand in bone marrow macrophages. In mice with CIA, early intervention with sulfuretin prevented joint destruction, as evidenced by a lower cumulative disease incidence and an absence of diverse disease features based on hind paw thickness, radiologic and histopathologic findings, and inflammatory cytokine levels. In mice with established arthritis, sulfuretin treatment significantly reduced synovial inflammation and joint destruction. The in vitro and in vivo protective effects of sulfuretin were mediated by inhibition of the NF-κB signaling pathway.SignificanceThese results suggest that using sulfuretin to block the NF-κB pathway in rheumatoid joints reduces both inflammatory responses and joint destruction. Therefore, sulfuretin may have therapeutic value in preventing or delaying the progression of rheumatoid arthritis.  相似文献   

9.

Introduction

Ankylosing spondylitis (AS) is unique in its pathology where inflammation commences at the entheses before progressing to an osteoproliferative phenotype generating excessive bone formation that can result in joint fusion. The underlying mechanisms of this progression are poorly understood. Recent work has suggested that changes in Wnt signalling, a key bone regulatory pathway, may contribute to joint ankylosis in AS. Using the proteoglycan-induced spondylitis (PGISp) mouse model which displays spondylitis and eventual joint fusion following an initial inflammatory stimulus, we have characterised the structural and molecular changes that underlie disease progression.

Methods

PGISp mice were characterised 12 weeks after initiation of inflammation using histology, immunohistochemistry (IHC) and expression profiling.

Results

Inflammation initiated at the periphery of the intervertebral discs progressing to disc destruction followed by massively excessive cartilage and bone matrix formation, as demonstrated by toluidine blue staining and IHC for collagen type I and osteocalcin, leading to syndesmophyte formation. Expression levels of DKK1 and SOST, Wnt signalling inhibitors highly expressed in joints, were reduced by 49% and 63% respectively in the spine PGISp compared with control mice (P < 0.05) with SOST inhibition confirmed by IHC. Microarray profiling showed genes involved in inflammation and immune-regulation were altered. Further, a number of genes specifically involved in bone regulation including other members of the Wnt pathway were also dysregulated.

Conclusions

This study implicates the Wnt pathway as a likely mediator of the mechanism by which inflammation induces bony ankylosis in spondyloarthritis, raising the potential that therapies targeting this pathway may be effective in preventing this process.  相似文献   

10.
Rheumatoid arthritis (RA) is a chronic symmetrical autoimmune disease of unknown etiology that affects primarily the diarthrodial joints. Characteristic features of RA pathogenesis are synovial inflammation and proliferation accompanied by cartilage erosion and bone loss. Fibroblast-like synoviocytes (FLS) display an important role in the pathogenesis of RA. Several lines of evidence show that the Wnt signaling pathway significantly participates in the RA pathogenesis. The Wnt proteins are glycoproteins that bind to the Fz receptors on the cell surface, which leads to several important biological functions, such as cell differentiation, embryonic development, limb development and joint formation. Accumulated evidence has suggested that this signaling pathway plays a key role in the FLS activation, bone resorption and joint destruction during RA development. Greater knowledge of the role of the Wnt signaling pathway in RA could improve understanding of the RA pathogenesis and the differences in RA clinical presentation and prognosis. In this review, new advances of the Wnt signaling pathway in RA pathogenesis are discussed, with special emphasis on its different roles in synovial inflammation and bone remodeling. Further studies are needed to reveal the important role of the members of the Wnt signaling pathway in the RA pathogenesis and treatment.  相似文献   

11.
Endogenous homeostasis and peripheral tissue metabolism are disrupted by irregular fluctuations in activation, movement, feeding and temperature, which can accelerate negative biological processes and lead to immune reactions, such as rheumatoid arthritis (RA) and osteoarthritis (OA). This review summarizes abnormal phenotypes in articular joint components such as cartilage, bone and the synovium, attributed to the deletion or overexpression of clock genes in cartilage or chondrocytes. Understanding the functional mechanisms of different genes, the differentiation of mouse phenotypes and the prevention of joint ageing and disease will facilitate future research.  相似文献   

12.
ObjectiveThe Wnt signaling pathway is an important modulator of bone metabolism. This study aims to clarify the changes in Wnt antagonists in active and biochemically controlled acromegalic patients.MethodsWe recruited 77 patients recently diagnosed with acromegaly. Of those, 41 patients with complete follow-up data were included. Thirty healthy patients matched for age, sex, and body mass index served as controls. At baseline and posttreatment, Wnt antagonists (sclerostin [SOST], dickkopf-related protein 1 [DKK-1], and Wnt inhibitory factor 1 [WIF-1]), bone turnover markers (osteocalcin, procollagen type 1 N-terminal propeptide [P1NP], and C-terminal telopeptide of type 1 collagen [CTX]) and the bone remodeling index were investigated.ResultsAcromegalic patients had higher serum osteocalcin, P1NP, and CTX and a higher bone remodeling index than controls (P < .01). Serum SOST, DKK-1, and WIF-1 levels were significantly decreased in patients compared to controls (all P < .01). Serum SOST and WIF-1 levels were negatively correlated with growth hormone levels; SOST levels were positively correlated with WIF-1. After treatment, serum bone turnover markers and the bone remodeling index decreased, while SOST and WIF-1 significantly increased (P < .05). DKK-1 levels did not change compared to baseline (P > .05). In biochemically controlled patients, SOST and WIF-1 levels and bone turnover markers were restored and did not differ from those of the control participants (all P > .05).ConclusionPatients with active acromegaly exhibited significantly decreased Wnt antagonist levels. The reduction in Wnt antagonists is a compensatory mechanism to counteract increased bone fragility in active acromegaly.  相似文献   

13.
Production of matrix metalloproteinases (MMP) in joint tissue of patients with inflammatory arthritis facilitates cartilage degradation and bone erosion, and leads to joint deformities and crippling. Thus, MMPs are important targets for agents designed to treat inflammatory arthritis. Oral administration of ajulemic acid (AjA), a synthetic, nonpsychoactive cannabinoid acid, prevents joint tissue injury in rats with adjuvant arthritis. AjA binds to and activates PPARgamma directly. Therefore, we investigated the influence of AjA on MMP production in human fibroblast-like synovial cells (FLS), and examined the role of PPARgamma in the mechanism of action of AjA. FLS, treated or not with a PPARgamma antagonist, were treated with AjA then stimulated with TNFalpha or IL-1alpha. Release of MMPs-1, 3, and 9 was measured by ELISA. The influence of AjA on MMP-3 release from stimulated PPARgamma positive (PPAR+/-) and PPARgamma null (PPAR-/-) mouse embryonic fibroblasts (MEF) was also examined. Addition of AjA to FLS suppressed production of MMPs whether or not PPARgamma activation was blocked. Secretion of MMP-3 was also suppressed by AjA in both TNFalpha- and IL-1alpha-stimulated PPARgamma+/- and PPARgamma-/- MEF. Suppression of MMP secretion from FLS by AjA appears to be PPARgamma independent. Prevention by AjA of joint tissue injury and crippling in the rat adjuvant arthritis model may be explained in large part by inhibition of MMPs. These results suggest that AjA may be useful for treatment of patients with rheumatoid arthritis and osteoarthritis.  相似文献   

14.
15.
The synovium from patients with rheumatoid arthritis (RA) and LEW/N rats with streptococcal cell wall (SCW) arthritis, an experimental model resembling RA, is characterized by massive proliferation of synovial connective tissues and invasive destruction of periarticular bone and cartilage. Since heparin binding growth factor (HBGF)-1, the precursor of acidic fibroblast growth factor (FGF), is a potent angiogenic polypeptide and mitogen for mesenchymal cells, we sought evidence that it was involved in the synovial pathology of RA and SCW arthritis. HBGF-1 mRNA was detected in RA synovium using the polymerase chain reaction technique, and its product was immunolocalized intracellularly in both RA and osteoarthritis (OA) synovium. HBGF-1 staining was more extensive and intense in synovium of RA patients than OA and correlated with the extent and intensity of synovial mononuclear cell infiltration. HBGF-1 staining also correlated with c-Fos protein staining. In SCW arthritis, HBGF-1 immunostaining was noted in bone marrow, bone, cartilage, synovium, ligamentous and tendinous structures, as well as various dermal structures and developed early in both T-cell competent and incompetent rats. Persistent high level immunostaining of HBGF-1 was only noted in T-cell competent rats like the disease process in general. These observations implicate HBGF-1 in a multitude of biological functions in inflammatory joint diseases.  相似文献   

16.
Wingless proteins, termed Wnt, are involved in embryonic development, blood cell differentiation, and tumorigenesis. In mammalian hematopoiesis, Wnt signaling is essential for stem-cell homeostasis and lymphocyte differentiation. Recent studies have suggested that these molecules are associated with cardiovascular diseases, rheumatoid arthritis, and osteoarthritis. Furthermore, Wnt5a signaling is essential for the general inflammatory response of human macrophages. Periodontitis is a chronic inflammatory disease caused by gram-negative periodontopathic bacteria and the resultant host immune response. Periodontitis is characterized by loss of tooth-supporting structures and alveolar bone resorption. There have been no previous reports on Wnt5a expression in periodontitis tissue, and only few study reported the molecular mechanisms of Wnt5a expression in LPS-stimulated monocytic cells. Using RT-PCR, we demonstrated that Wnt5a mRNA expression was up-regulated in chronic periodontitis tissue as compared to healthy control tissue. P. gingivalis LPS induced Wnt5a mRNA in the human monocytic cell line THP-1 with a peak at 4 hrs after stimulation. P. gingivalis LPS induced higher up-regulation of Wnt5a mRNA than E. coli LPS. The LPS receptors TLR2 and TLR4 were equally expressed on the surface of THP-1 cells. P. gingivalis LPS induced IκBα degradation and was able to increase the NF-κB binding activity to DNA. P. gingivalis LPS-induced Wnt5a expression was inhibited by NF-κB inhibitors, suggesting NF-κB involvement. Furthermore, IFN-γ synergistically enhanced the P. gingivalis LPS-induced production of Wnt5a. Pharmacological investigation and siRNA experiments showed that STAT1 was important for P. gingivalis LPS-induced Wnt5a expression. These results suggest that the modulation of Wnt5a expression by P. gingivalis may play an important role in the periodontal inflammatory process and serve a target for the development of new therapies.  相似文献   

17.
MRI bone oedema occurs in various forms of inflammatory and non-inflammatory arthritis and probably represents a cellular infiltrate within bone. It is common in early rheumatoid arthritis and is associated with erosive progression and poor functional outcome. Histopathological studies suggest that a cellular infiltrate comprising lymphocytes and osteoclasts may be detected in subchondral bone and could mediate the development of erosions from the marrow towards the joint surface. There is emerging evidence from animal models that such an infiltrate corresponds with MRI bone oedema, pointing towards the bone marrow as a site for important pathology driving joint damage in rheumatoid arthritis.  相似文献   

18.
Six novel members of the IL-1 family of cytokines were recently identified, primarily through the use of DNA database searches for IL-1 homologues, and were named IL-1F5 to IL-1F10. In the present study, we investigated the effect of IL-1F8 on primary human joint cells, and examined the expression of the new IL-1 family members in human and mouse joints. Human synovial fibroblasts (hSFs) and human articular chondrocytes (hACs) expressed the IL-1F8 receptor (IL-1Rrp2) and produced pro-inflammatory mediators in response to recombinant IL-1F8. IL-1F8 mRNA expression was increased in hSFs upon stimulation with proinflammatory cytokines, whereas in hACs IL-1F8 mRNA expression was constitutive. However, IL-1F8 protein was undetectable in hSF and hAC culture supernatants. Furthermore, although IL-1beta protein levels were increased in inflamed human and mouse joint tissue, IL-1F8 protein levels were not. IL-1F8 levels in synovial fluids were similar to or lower than those in matched serum samples, suggesting that the joint itself is not a major source of IL-1F8. Serum levels of IL-1F8 were similar in healthy donors, and patients with rheumatoid arthritis, osteoarthritis and septic shock, and did not correlate with inflammatory status. Interestingly however, we observed high IL-1F8 levels in several serum samples in all groups. In conclusion, IL-1F8 exerts proinflammatory effects in primary human joint cells. Joint and serum IL-1F8 protein levels did not correlate with inflammation, but they were high in some human serum samples tested, including samples from patients with rheumatoid arthritis. It remains to be determined whether circulating IL-1F8 can contribute to joint inflammation in rheumatoid arthritis.  相似文献   

19.
MRI bone oedema occurs in various forms of inflammatory and non-inflammatory arthritis and probably represents a cellular infiltrate within bone. It is common in early rheumatoid arthritis and is associated with erosive progression and poor functional outcome. Histopathological studies suggest that a cellular infiltrate comprising lymphocytes and osteoclasts may be detected in subchondral bone and could mediate the development of erosions from the marrow towards the joint surface. There is emerging evidence from animal models that such an infiltrate corresponds with MRI bone oedema, pointing towards the bone marrow as a site for important pathology driving joint damage in rheumatoid arthritis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号