首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin plays a major role in the control of pancreatic amylase biosynthesis. In this study we determined glucose metabolism by pancreatic acini as well as the pancreatic content of both amylase protein and amylase mRNA during development of insulin resistance in the obese Zucker rat. At age 4 weeks there were no abnormalities detected in the above parameters, although the obese animals were already hyperinsulinaemic. At 6 weeks glucose metabolism was decreased by 50% in acini from obese rats, whereas pancreatic amylase-gene expression was only slightly impaired. At 22 weeks glucose metabolism was decreased by 50%, amylase content by 55% and amylase mRNA by 60% in acinar tissue of obese rats. As expected, hyperinsulinaemia increased markedly with age. Thus development of severe insulin resistance was associated with impairment of amylase-gene expression. To decrease insulin resistance, one group of adult obese rats was treated with Ciglitazone for 4 weeks. A lowered plasma insulin concentration without alteration of food intake was taken as evidence of decreased insulin resistance. This was associated with normalization of glucose metabolism and a marked increase of both amylase content of pancreatic tissue and amylase mRNA. In conclusion, both the increase of insulin resistance with age and its partial reversal by Ciglitazone treatment appear to modulate pancreatic amylase-gene expression in the obese Zucker rat.  相似文献   

2.
The contents of three major digestive enzymes (amylase, lipase and chymotrypsinogen) were measured in the obese Zucker rat. Only minimal changes were found in 7-week-old rats, but in adult obese rats (14-16 weeks) the amylase content was decreased by 50%, whereas the lipase and chymotrypsinogen contents were increased by 45% and 20%, respectively, compared with lean controls. Abnormalities of enzyme secretion were also found. Since the changes observed in enzyme proportions in adult obese Zucker rats are qualitatively similar to those observed in insulinopenic diabetes and other states associated with decreased glucose metabolism, it is speculated that the abnormalities found in the obese Zucker rat may be due to decreased glucose metabolism in the exocrine tissue consequent to insulin resistance.  相似文献   

3.
Insulin is known to play a specific role in the biosynthesis of pancreatic amylase. In the insulin resistant adult C57 BL/6J--ob/ob mouse there is a reduction of pancreatic amylase content. The differences of enzyme content could not be explained by differences of food intake between obese and lean mice, but are more likely to be the consequence of insulin resistance at the level of the exocrine pancreas. By contrast, greater pancreatic content of amylase and lipase seen in young obese mice (less than 2-months old) was associated with the greater food intake of these mice with respect to lean controls.  相似文献   

4.
The secretory function of the exocrine pancreas has been studied in dispersed pancreatic acini from obese and homozygous lean Zucker rats at 6 and 22 wk. No abnormality was found in acini from young rats. Acini from 22 wk obese and lean rats were equally responsive to secretagogues which stimulate cAMP, i.e. vasoactive intestinal peptide (VIP) and secretin. By contrast, there was a reduction in the maximum responsiveness to caerulein and carbamylcholine in acini from obese rats. These latter secretagogues act through mobilization of intracellular Ca2+. Since obese animals are insulin resistant and amylase release is modulated by insulin, the role of insulin resistance in the secretory defect was then investigated. A group of 22 wk obese rats received treatment with Ciglitazone (a drug which reduces insulin resistance in obese laboratory animals) for 4 wk before the secretion study. Despite the expected reduction in insulin resistance there was no improvement of the secretory defect seen with caerulein and carbamylcholine stimulation. Thus, the secretory abnormality in the exocrine pancreas of adult obese Zucker rats does not appear to be directly associated with insulin resistance. Furthermore, the secretory defect is linked to those secretagogues which induce Ca2+-independent phosphoinositide hydrolysis and Ca2+ mobilization in the target cell.  相似文献   

5.
The minced pancreas of the neonatal rat was cultured for 35 days in a pancreatic chamber which was constructed of a plastic tube and an ultrafiltration membrane. Insulin and amylase secreted from this pancreatic chamber into the culture medium were measured. During the experiment, the concentration of glucose in the culture medium was changed between 5.5 and 16.5 mM at 2-3 day intervals in order to determine the insulin secretory response of the pancreatic tissue. Insulin secretion was markedly increased in response to 16.5 mM glucose. The ratio of insulin secretion to amylase secretion in the culture medium increased with the advance of culture days although secretions of both insulin and amylase decreased individually. On the 7th culture day, short term incubations were performed to test with various insulin secretagogues; obvious insulin release into the incubation medium was observed. These results show that the pancreatic chamber also in vitro secretes insulin rapidly and significantly in response to various stimuli; that by longer culture of a neonatal rat pancreas in this device, insulin secretory cells without exocrine tissue would be obtained without using digestive enzymes; that application of a pancreatic chamber for a pancreatic transplantation may be feasible.  相似文献   

6.
The aim of the present work was to investigate the laboratory and morphologic alterations in the pancreas 6 months after pancreatitis induction with L-arginine (Arg) in normal and streptozotocin (STZ)-diabetic rats. The amylase content of the pancreas was significantly decreased in the Arg-treated groups vs. the control group. No significant changes were observed in the DNA, soluble protein and lipase contents of the pancreas. In the STZ-treated groups, the serum glucose level was significantly elevated, whereas the serum immunoreactive insulin (IRI) level was significantly decreased vs. the control group. In these treated groups, the amylase content of the pancreas was also significantly decreased, but that of trypsinogen was significantly elevated vs. the control group. Histologic sections revealed periductal fibroses, adipose tissue and tubular complexes in the Arg-treated rats, but centroacinar hyperplasia was not observed in these groups. No alterations were observed on histological examination in the diabetic rats vs. normal rats 6 months following pancreatitis induction. In conclusion, a major restitution of the pancreatic enzyme content, but moderate histologic alterations were detected 6 months following pancreatitis induction with Arg. The diabetic state appeared to shift the normal pancreatic enzyme content (decreased amylase and increased trypsinogen) in this long-term study, but not to modify the recovery of the exocrine pancreas 6 months following Arg-induced pancreatitis.  相似文献   

7.
The Zucker obese (fa/fa) rat is a model of hypertrophic/hyperplastic obesity. These rats develop marked hyperinsulinemia, insulin resistance, and pancreatic beta-cell hyperplasia. In the present study, chronic (22 weeks) administration of the 17-ketosteroid, dehydroepiandrosterone (DHEA), to obese Zucker rats significantly decreased body weight, and retroperitoneal and parametrial fat pad weights. In addition, beta-cell hyperplasia was reduced as well as pancreatic insulin content. DHEA treatment of lean Zucker rats also reduced body weight, fat depot weight, pancreatic islet diameter, and pancreatic insulin content. These data indicate that DHEA treatment appears to inhibit insulin synthesis and beta-cell proliferation. Whether this is due to a direct effect on the pancreas or due to improvement of peripheral insulin sensitivity remains to be elucidated.  相似文献   

8.
The rates of biosynthesis of amylase, lipase and chymotrypsinogen were followed in rat pancreas in vivo after intravenous injection of the hormone cholecystokinin-pancreozymin (8 IDU/kg) associated with secretin (5 CU/kg0. This pancreatic stimulation resulted in non-parallel variations of the rates of biosynthesis of the three studied enzymes, suggesting independent regulation of synthesis. The result of one stimulation was calculated in terms of quantities of enzymes synthesized by the pancreas in comparison to control. It was found that chymotrypsinogen, amylase and lipase productions were increased by 63, 26 and 10%, respectively, indicating that repeated cholecystokinin-pancreozymin plus secretin stimulations could induce “adaptation-like” modifications of the pancreatic enzyme content.  相似文献   

9.
Atomic force microscopy reveal pit-like structures typically containing three or four, approximately 150 nm in diameter depressions at the apical plasma membrane in live pancreatic acinar cells. Stimulation of secretion causes these depressions to dilate and return to their resting size following completion of the process. Exposure of acinar cells to cytochalasin B results in decreased depression size and a loss in stimulable secretion. It is hypothesized that depressions are the fusion pores, where membrane-bound secretory vesicles dock and fuse to release vesicular contents. Zymogen granules, the membrane-bound secretory vesicles in exocrine pancreas, contain the starch digesting enzyme, amylase. Using amylase-specific immunogold labeling, localization of amylase at depressions following stimulation of secretion is demonstrated. This study confirms depressions to be the fusion pores in pancreatic acinar cells. High-resolution images of the fusion pore in live pancreatic acinar cells reveal the structure in much greater detail than has previously been observed.  相似文献   

10.
The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1). Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase) were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.  相似文献   

11.
BACKGROUND AND AIMS: The neuroendocrine hormone amylin, cosecreted with insulin from pancreatic beta-cells in response to nutrient ingestion, has several physiologic actions to limit the rate of nutrient uptake, including the slowing of gastric emptying. METHODS: To investigate whether amylin might modulate digestive enzyme secretion from the exocrine pancreas, anesthetized Sprague Dawley rats were cannulated via the pancreatic duct and the secretory response (flow, amylase and lipase) to cholecystokinin (1 microg s.c.) was measured in the absence and in the presence of 0.1, 0.3 and 1 microg s.c. doses of amylin. RESULTS: Amylin alone did not affect pancreatic secretion, but it dose-dependently inhibited cholecystokinin-stimulated amylase secretion by up to 58% and lipase secretion by up to 67%. The ED50's for these responses were 0.21 microg+/-0.18 log and 0.11 microg+/-0.05 log, respectively, doses that result in excursions of plasma amylin concentration that are within the reported physiological range. Amylin did not evoke cell signalling in the Ar42j model of pancreatic acinar cells, and responses to amylin were not observed in either Ar42j cells or isolated pancreatic acini in a microphysiometer indicating that the effect of amylin was indirect. CONCLUSIONS: Inhibition of stimulated pancreatic enzyme secretion is likely to be a physiological, extrapancreatic, action of amylin. Amylinergic mechanisms modulating both gastric emptying and pancreatic enzyme secretion may thus match, respectively, the appearance of substrate and enzymes in the gut lumen.  相似文献   

12.
Membrane recycling in pancreatic acinar cells involves endocytic vesicle formation at the apical cell surface and rapid membrane traffic to the Golgi complex. During this process a small amount of extracellular content is taken up from the acinar lumen. In order to determine whether secretory proteins already released into the pancreatic acinar lumen are reinternalized during membrane retrieval, 3H-labeled amylase or 125I-labeled secretory proteins were reinfused through the pancreatic duct until the lumina were reached. Tissue samples from various time points were prepared for light and electron microscope autoradiography. The observations showed that [3H]amylase and, to a lesser extent, the 125I-labeled secretory proteins were internalized at the apical cell surface and rapidly (within 2-5 min) transferred to the Golgi cisternae and the condensing vacuoles; only a minor proportion of silver grains was observed over lysosomes. In addition, at later time points, mature secretion granules close to the Golgi complex became labeled. The results indicate that exocytosis in the rat exocrine pancreas does not operate at 100% efficiency; part of the exported amylase and part of the total secretion product are reinternalized concomitantly with the endocytic removal of plasma membrane and are copackaged together with newly synthesized secretory proteins.  相似文献   

13.
Development of human pancreas   总被引:2,自引:0,他引:2  
The developmental sequence of human pancreatic secretory proteins has not previously been studied in detail. We applied immunohistochemistry to study 20 fetal and neonatal pancreas' (8th to 39th gestational weeks) using antisera against the following pancreatic secretory proteins: pancreatic secretory trypsin inhibitor (PSTI), serine proteinases (trypsin, chymotrypsin, and elastase I), and amylase. PSTI was first detected in developing buds of the pancreas during the 8th gestational week, and proteinases were observed in acinar cells during the 14th week of gestation. Immunoreactivity for both PSTI and proteinases was found in most acinar cells soon after their appearance. Immunoreactivity for amylase could not be detected in fetal or neonatal pancreas tissue. PSTI was also found in developing islets during the 14th gestational week, but the number of immunoreactive cells had decreased by term. Cells positive for serine proteinases were occasionally in contact with islets in second-trimester fetuses. In discussing these results, we give particular attention to the nonparallel appearance of secretory products in the fetal pancreas, and the significance of cells immunoreactive for secretory proteins in endocrine islets.  相似文献   

14.
Organ Culture of Foetal Rat Pancreas   总被引:1,自引:0,他引:1  
The differentiation and growth of the foetal rat pancreas (20 days postcoitum) was studied in parabiotic organ culture with foetal adrenal tissue. In such co-cultures, characteristic pancreatic morphology was preserved and further acinar cell differentiation was fostered. Acinar cells continued to represent about 65% of the total explant volume following short-term incubation. The selective islet cell proliferation, previously observed in control pancreatic explants cultured alone, did not occur when adrenals were co-cultured. In addition, the amylase content of the incubation media and of the explanted pancreatic tissue remained high with adrenal co-culture, while the insulin content of the media and of the explanted tissue was markedly suppressed when compared to control pancreatic explants cultured alone. The effects of the adrenal in maintaining the differentiated acinar component of the pancreas and suppressing media insulin concentration diminished over extended incubation. The addition of adrenals to culture of foetal pancreatic explants after 6 days of control culture (at a time when differentiated acinar cells were not identifiable in the explant) did not result in redifferentiation of the acinar component, but did markedly depress media insulin content. Removal of adrenals after 4 days of co-culture resulted in an immediate rise in media insulin concentration and a rapid decline in pancreatic acinar mass. An adrenal-exocrine pancreatic axis is proposed and it is suggested that foetal adrenal secretions may play an important role in the development of the exocrine pancreas in vivo as well as in vitro.  相似文献   

15.
J Rouru  R Huupponen  U Pesonen  M Koulu 《Life sciences》1992,50(23):1813-1820
The effect of subchronic metformin treatment on food intake, weight gain and plasma and tissue hormone levels was investigated in genetically obese male Zucker rats and in their lean controls. Metformin hydrochloride (320 mg/kg/day for 14 days in the drinking water) significantly reduced 24 hour food intake both after one and two weeks treatment in obese rats. In contrast, metformin had only a transient effect on food intake in lean animals. The reduced food intake was associated with body weight decrease, particularly in obese rats. Metformin markedly reduced also the hyperinsulinemia of the obese animals without altering their plasma glucose or pancreatic insulin content which may reflect an improved insulin sensitivity after metformin treatment. Metformin did not change plasma corticosterone levels or insulin and somatostatin concentrations in the pancreas. Metformin reduced pyloric region somatostatin content in lean rats. It is concluded that metformin has an anorectic effect and reduces body weight and hyperinsulinemia in genetically obese Zucker rat.  相似文献   

16.
Recent studies have suggested that sensory nerves may influence insulin secretion and action. The present study investigated the effects of resiniferatoxin (RTX) inactivation of sensory nerves (desensitization) on oral glucose tolerance, insulin secretion and whole body insulin sensitivity in the glucose intolerant, hyperinsulinemic, and insulin-resistant obese Zucker rat. After RTX treatment (0.05 mg/kg RTX sc given at ages 8, 10, and 12 wk), fasting plasma insulin was reduced (P < 0.0005), and oral glucose tolerance was improved (P < 0.005). Pancreas perfusion showed that baseline insulin secretion (7 mM glucose) was lower in RTX-treated rats (P = 0.01). Insulin secretory responsiveness to 20 mM glucose was enhanced in the perfused pancreas of RTX-treated rats (P < 0.005) but unaffected in stimulated, isolated pancreatic islets. At the peak of spontaneous insulin resistance in the obese Zucker rat, insulin sensitivity was substantially improved after RTX treatment, as evidenced by higher glucose infusion rates (GIR) required to maintain euglycemia during a hyperinsulinemic euglycemic (5 mU.kg(-1).min(-1)) clamp (GIR(60-120min): 5.97 +/- 0.62 vs. 11.65 +/- 0.83 mg.kg(-1).min(-1) in RTX-treated rats, P = 0.003). In conclusion, RTX treatment and, hence, sensory nerve desensitization of adult male obese Zucker rats improved oral glucose tolerance by enhancing insulin secretion, and, in particular, by improving insulin sensitivity.  相似文献   

17.
Response of rat exocrine pancreas to high-fat and high-carbohydrate diets   总被引:2,自引:0,他引:2  
Intake of diets with high fat content is a risk factor for acute pancreatitis and pancreatic cancer. The underlying mechanisms leading to the development of these diseases due to high fat intake are currently unknown. The current study was designed in rats to determine the physiologic and pathological consequences of a highfat diet that contained excess amounts of cottonseed oil or a high-carbohydrate diet that contained high amounts of sucrose on the exocrine pancreas. Rats were maintained on the diets for 4 weeks, and a cannula was inserted into the right jugular vein and one into the pancreatic duct for collection of pancreatic juice. Volume of the pancreatic juice and concentrations of amylase, lipase, and trypsinogen in the pancreatic juice were measured before and after infusions of CCK-8. Results showed that basal and CCK-stimulated pancreatic outputs of volume, amylase and lipase but not trypsinogen, were significantly elevated in intact rats given a high-fat diet when compared with rats given a high-carbohydrate diet. Forty-eight hours later, rats were sacrificed, and parts of the pancreas were removed for isolation of pancreatic acinar cells and for histopathologic studies. Pancreatic acini isolated from rats on a high-fat diet showed significantly lower basal and CCK-stimulated amylase release when compared with those on a high-carbohydrate diet. Histology of the pancreas of rats on a high-carbohydrate diet appeared normal; however, the pancreas of rats on high-fat diet showed significant alterations in exocrine pancreas. These results showed abnormalities in the exocrine pancreas of rats on a high-fat diet, that were not found in rats on a high-carbohydrate diet; further, they support the contention that a high-fat diet has a deleterious effect on the pancreas.  相似文献   

18.
Secretion granules of the rat transplantable pancreatic acinar carcinoma and of normal rat pancreas were isolated by differential centrifugation. Analysis of the granule content by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and isoelectric focusing procedures combined with specific enzyme assays indicated essential qualitative similarities between normal and neoplastic secretory proteins, suggesting retention of enzymic differentiation in this pancreatic acinar carcinoma. Accordingly, this epithelial tumor should serve as an important model for examination of regulatory mechanisms in cell differentiation and neoplasia.  相似文献   

19.
Ten pancreatic secretory proteins have been demonstrated in differentiated pancreatic acinar carcinoma cells by the protein A-gold immunocytochemical approach. The high resolution of the technique has allowed for the localization of the different proteins in the cellular compartments involved in protein secretion: RER, Golgi and secretory granules. The quantitative evaluation of the labeling for amylase has demonstrated the presence of an increasing gradient in the intensity from the RER to the Golgi and to the secretory granules which may reflect the process of protein concentration along the secretory pathway. These results, together with those obtained using the pulse-labeling autoradiographic approach, demonstrate that differentiated acinar carcinoma cells are capable of processing secretory proteins. When intensities of labeling obtained for different proteins on acinar carcinoma cells were compared to those obtained on normal pancreatic acinar cells, major differences were observed for some proteins. In addition, studies performed on the pancreatic tissue of the tumor-bearing animals have shown the presence of morphological alterations in the acinar cells.  相似文献   

20.
The effect of ingesting isocaloric and isonitrogenous diets with increasing amounts of lipid (0-30%) and consequently decreasing amounts of carbohydrates (68.7-1.25%) on the exocrine pancreas was studied in adult male Wistar rats. Pancreatic contents of chymotrypsin, lipase and colipase activity, as well as synthesis of amylase, lipase, procarboxypeptidases and individual serine proteases were examined. Lipid-free diets and diets containing 1% lipid were found to have little effect on pancreatic proteins as compared with lipid-rich diets where two distinct patterns of response were observed. Ingestion of diets containing 3-20% lipid resulted in a progressive increase in the activity of lipase, colipase and chymotrypsin up to 2-fold in the first case and 1.6-fold in the two other cases when animals were fed the 20% fat diet. Under the latter conditions, the relative synthesis of secretory proteins, as expressed as percentage of the radioactivity incorporated into individual proteins compared to that incorporated into the total mixture of exocrine proteins, was unchanged for procarboxypeptidases, whereas it was stimulated for lipase (2-fold) and serine proteases (1.6-fold). Amylase relative synthesis progressively decreased as the lipid content of diets increased. Consumption of hyperlipidic diets containing 25% and 30% fat resulted in a further enhancement in the activity of lipase and colipase in the gland in contrast with chymotrypsin activity which was unchanged as compared to the control diet (3% lipid). As far as biosynthesis was concerned, a plateau in the relative synthesis of lipase and serine protease was reached. Amylase relative synthesis further decreased down to 2.2-fold when rats were fed the 30% fat-rich diet whereas that of procarboxypeptidases was markedly increased (about 1.7-fold). Absolute rates of synthesis of total pancreatic secretory proteins, as expressed with regard to the DNA content of the tissue, indicated that biosynthesis of all secretory pancreatic proteins was stimulated by hyperlipidic diets (at least 2-fold with the 30% lipid diet). Consequently, when such an increase was taken into consideration, the absolute synthesis of amylase was found to be unchanged throughout the dietary manipulations, whereas that of lipase, procarboxypeptidases and serine proteases were stimulated by 4.0-fold, 3.4-fold and 3.2-fold, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号