首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+/calmodulin-dependent myosin light chain kinase phosphorylates the regulatory light chain of myosin. Rabbit skeletal muscle myosin light chain kinase also catalyzes a Ca2+/calmodulin-dependent autophosphorylation with a rapid rate of incorporation of 1 mol of 32P/mol of kinase and a slower rate of incorporation up to 1.52 mol of 32P/mol. Autophosphorylation was inhibited by a peptide substrate that has a low Km value for myosin light chain kinase. Autophosphorylation at both rates was concentration-independent, indicating an intramolecular mechanism. There were no significant changes in catalytic properties toward light chain and MgATP substrates or in calmodulin activation properties upon autophosphorylation. After digestion with V8 protease, phosphopeptides were purified and sequenced. Two phosphorylation sites were identified, Ser 160 and Ser 234, with the former associated with the rapid rate of phosphorylation. Both sites are located amino terminal of the catalytic domain. These results indicate that the extended "tail" region of the enzyme can fold into the active site of the kinase.  相似文献   

2.
A protease-activated protein kinase that phosphorylates the P light chain of myosin in the absence of Ca2+ and calmodulin has been isolated from rabbit skeletal muscle. The enzyme has properties similar to protease-activated kinase I from rabbit reticulocytes [S. M. Tahara and J. A. Traugh (1981) J. Biol. Chem. 256, 11588-11564], which has been shown to phosphorylate the P light chain of myosin [P. T. Tuazon, J. T. Stull, and J. A. Traugh (1982) Biochem. Biophys. Res. Commun. 108, 910-917]. The protease-activated kinase from skeletal muscle has been partially purified by chromatography on DEAE-cellulose, phosphocellulose and hydroxyapatite. The enzyme phosphorylates histone as well as the P light chain of myosin following activation by proteolysis. Stoichiometric phosphorylation of myosin light chain was observed with the protease-activated kinase and myosin light chain kinase. The sites phosphorylated by the protease-activated kinase and myosin light chain kinase were examined by two-dimensional peptide mapping following chymotryptic digestion. The phosphopeptides observed with the protease-activated kinase were different from those obtained with the Ca2+-dependent myosin light chain kinase, indicating that the two enzymes phosphorylated different sites on the P light chain of skeletal muscle myosin. When actomyosin from skeletal muscle was examined as substrate, the P light chain was phosphorylated following activation of the protease-activated kinase by limited proteolysis.  相似文献   

3.
Repetitive low frequency stimulation results in potentiation of twitch force development in fast-twitch skeletal muscle due to myosin regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent skeletal muscle myosin light chain kinase (skMLCK). We generated transgenic mice that express an skMLCK CaM biosensor in skeletal muscle to determine whether skMLCK or CaM is limiting to twitch force potentiation. Three transgenic mouse lines exhibited up to 22-fold increases in skMLCK protein expression in fast-twitch extensor digitorum longus muscle containing type IIa and IIb fibers, with comparable expressions in slow-twitch soleus muscle containing type I and IIa fibers. The high expressing lines showed a more rapid RLC phosphorylation and force potentiation in extensor digitorum longus muscle with low frequency electrical stimulation. Surprisingly, overexpression of skMLCK in soleus muscle did not recapitulate the fast-twitch potentiation response despite marked enhancement of both fast-twitch and slow-twitch RLC phosphorylation. Analysis of calmodulin binding to the biosensor showed a frequency-dependent activation to a maximal extent of 60%. Because skMLCK transgene expression is 22-fold greater than the wild-type kinase, skMLCK rather than calmodulin is normally limiting for RLC phosphorylation and twitch force potentiation. The kinase activation rate (10.6 s(-1)) was only 3.6-fold slower than the contraction rate, whereas the inactivation rate (2.8 s(-1)) was 12-fold slower than relaxation. The slower rate of kinase inactivation in vivo with repetitive contractions provides a biochemical memory via RLC phosphorylation. Importantly, RLC phosphorylation plays a prominent role in skeletal muscle force potentiation of fast-twitch type IIb but not type I or IIa fibers.  相似文献   

4.
5.
The purpose of this study was to characterize myosin light chain kinase (MLCK) expression in cardiac and skeletal muscle. The only classic MLCK detected in cardiac tissue, purified cardiac myocytes, and in a cardiac myocyte cell line (AT1) was identical to the 130-kDa smooth muscle MLCK (smMLCK). A complex pattern of MLCK expression was observed during differentiation of skeletal muscle in which the 220-kDa-long or "nonmuscle" form of MLCK is expressed in undifferentiated myoblasts. Subsequently, during myoblast differentiation, expression of the 220-kDa MLCK declines and expression of this form is replaced by the 130-kDa smMLCK and a skeletal muscle-specific isoform, skMLCK in adult skeletal muscle. These results demonstrate that the skMLCK is the only tissue-specific MLCK, being expressed in adult skeletal muscle but not in cardiac, smooth, or nonmuscle tissues. In contrast, the 130-kDa smMLCK is ubiquitous in all adult tissues, including skeletal and cardiac muscle, demonstrating that, although the 130-kDa smMLCK is expressed at highest levels in smooth muscle tissues, it is not a smooth muscle-specific protein.  相似文献   

6.
Amino acid sequence of rabbit skeletal muscle myosin light chain kinase   总被引:5,自引:0,他引:5  
The amino acid sequence of the amino-terminal, 235-residue segment of rabbit skeletal muscle myosin light chain kinase has been determined. Together with the carboxyl-terminal segment previously described [Takio, K., Blumenthal, D. K., Edelman, A. M., Walsh, K. A., Krebs, E. G., & Titani, K. (1985) Biochemistry 24, 6028], the present work completes the 603-residue sequence of this protein. The amino-terminal segment that has been analyzed herein corresponds to a domain reported to be of highly asymmetrical shape and as yet unknown function. Secondary structure calculations failed to provide any evidence of alpha-helix or beta-structures, but polyproline II like helical structure is possible. Sequence analysis indicates the presence of approximately equal quantities of two isoforms differing in a single amino acid replacement. Unexpected difficulties were encountered in the present sequence analysis due to the presence of acid-labile Asp-Pro bonds and to five separable variants of a blocked 21-residue amino-terminal peptide, arising from rearrangement at an Asn-Gly bond.  相似文献   

7.
Myosin light chain kinase can be divided into three distinct structural domains, an amino-terminal "tail," of unknown function, a central catalytic core and a carboxy-terminal calmodulin-binding regulatory region. We have used a combination of deletion mutagenesis and monoclonal antibody epitope mapping to define these domains more closely. A 2.95-kilobase cDNA has been isolated that includes the entire coding sequence of rabbit skeletal muscle myosin light chain kinase (607 amino acids). This cDNA, expressed in COS cells encoded a Ca2+/calmodulin-dependent myosin light chain kinase with a specific activity similar to that of the enzyme purified from rabbit skeletal muscle. Serial carboxy-terminal deletions of the regulatory and catalytic domains were constructed and expressed in COS cells. The truncated kinases had no detectable myosin light chain kinase activity. Monoclonal antibodies which inhibit the activity of the enzyme competitively with respect to myosin light chain were found to bind between residues 235-319 and 165-173, amino-terminal of the previously defined catalytic core. Thus, residues that are either involved in substrate binding or in close proximity to a light chain binding site may be located more amino-terminal than the previously defined catalytic core.  相似文献   

8.
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.  相似文献   

9.
Myosin light chain kinase is activated by Ca2+/calmodulin. Insights into the kinetic mechanism of this activation by Ca2+/calmodulin have now been obtained using extrinsically labeled fluorescent calmodulin, a fluorescent peptide substrate, and a stopped-flow spectrophotofluorimeter. We employed spinach calmodulin labeled with the sulfhydryl-selective probe, 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid, to measure changes in the fluorescence intensity of the 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid-calmodulin upon binding to rabbit skeletal muscle myosin light chain kinase. The fluorescent peptide substrate KKRAARAC(sulfobenzo-furazan)SNVFS-amide was used to measure kinase activity. Our results showed that the binding interaction could be modeled as a two-step process: a bimolecular reaction with an association rate of 4.6 x 10(7) M-1 s-1 followed by an isomerization with a rate of 2.2 s-1. Phosphorylation of the peptide during stopped-flow experiments could be modeled by a two-step process with a catalytic association rate of 6.5 x 10(6) M-1 s-1 and a turnover rate of 10-20 s-1. Our results also indicated that kinase activity occurred too rapidly for the slower isomerization rate of 2.2 s-1 to be linked specifically to the activation process.  相似文献   

10.
A M Edelman  E G Krebs 《FEBS letters》1982,138(2):293-298
Phosphatidylethanolamine (PE) was isolated from membranes of Bacillus megaterium. The organism was grown at 20°C and 55°C. The phase equilibria in PE/water systems were studied by 2H and 31P nuclear magnetic resonance, and by polarized light microscopy. PE isolated from B. megaterium grown at 20°C forms a lamellar liquid crystalline phase at the growth temperature, and at low water contents a cubic liquid crystalline phase at 58°C. The ratio iso/ante-iso acyl chains was 0.3 in this lipid. PE isolated from this organism grown at 55°C forms only a lamellar liquid crystalline phase up to at least 65°C. In this lipid the ratio iso/ante-iso acyl chains was 3.2.  相似文献   

11.
Myosin light chain kinase is a Ca2+/calmodulin-dependent protein kinase which exhibits a very high degree of protein substrate specificity. The regulatory light chain of myosin is the only known physiological substrate of the enzyme. Based upon epitope mapping of monoclonal antibodies which inhibit kinase activity competitively with respect to the light chain substrate, residues 235-319 of the rabbit skeletal muscle kinase have been proposed to contain a light chain-binding site (Herring, B. P., Stull, J. T., and Gallagher, P. J. (1990) J. Biol. Chem. 265, 1724-1730). With the expression of a truncated kinase, we have further localized this putative binding site to residues 235-294. Mutation of acidic residues at positions 269 and 270 of the kinase resulted in a 10-fold increase in the Km value for the myosin light chain, with no significant change in the Vmax value. In contrast, altering a cluster of acidic amino acids at positions 261-263 had little effect on the Km value for the myosin light chain. These results suggest that residues 269 and 270 may be involved in protein-substrate binding. Interestingly, these residues, located amino-terminal of the homologous catalytic core (positions 302-539), are in a region which is highly conserved among myosin light chain kinases, but not other protein kinases. It is probable that the homologous catalytic core contains structural elements required for phosphotransferase activity. The catalytic domain of myosin light chain kinase would therefore include these conserved elements together with additional specific substrate-binding residues.  相似文献   

12.
Myosin light chain kinase was prepared from rabbit skeletal muscle. DEAE-Sephadex, calmodulin-Sepharose 4B affinity gel and Ultrogel AcA 34 were used for the purification. It took 3 days for the preparation, and 6.2 mg of myosin light chain kinase was isolated from 600 g of frozen muscle. The molecular weight of the myosin light chain kinase estimated by sedimentation equilibrium analysis was 103,000 +/- 4,100. The isoelectric point was 5.0. Chemical modification of cysteine residues did not affect the catalytic activity, but modification of tyrosine residues diminished the activity. In order to activate myosin light chain kinase, it was necessary to bind calmodulin in an equimolar ratio and the dissociation constant was estimated to be 3.6 nM. The optimum pH for the catalytic activity was 7.5, and the activity was inhibited by NaCl and KCl. In the presence of 2.74 mg/ml myosin light chain and 75 mM KCl, the catalytic activity was found to be 88 s-1. The Vm and Km at 0.14 M KCl were 100 s-1 and 53 microM, respectively, for the isolated light chain as substrate and 70-80 s-1 and 19 microM for myosin as substrate.  相似文献   

13.
D K Blumenthal  J T Stull 《Biochemistry》1980,19(24):5608-5614
Many biological processes are now known to be regulated by Ca2+ via calmodulin (CM). Although a general mechanistic model by which Ca2+ and calmodulin modulate many of these activities has been proposed, an accurate quantitative model is not available. A detailed analysis of skeletal muscle myosin light chain kinase activation was undertaken in order to determine the stoichiometries and equilibrium constants of Ca2+, calmodulin, and enzyme catalytic subunit in the activation process. The analysis indicates that activation is a sequential, fully reversible process requiring both Ca2+ and calmodulin. The first step of the activation process appears to require binding of Ca2+ to all four divalent metal binding sites on calmodulin for form the complex, Ca42+-calmodulin. This complex then interacts with the inactive catalytic subunit of the enzyme to form the active holoenzyme complex, Ca42+-calmodulin-enzyme. Formation of the holoenzyme follows simply hyperbolic kinetics, indicating 1:1 stoichiometry of Ca42+-calmodulin to catalytic subunit. The rate equation derived from the mechanistic model was used to determine the values of KCa2+ and KCM, the intrinsic activation constants for each step of the activation process. KCa2+ and KCM were found to have values of 10 microM and 0.86 nM, respectively, at 10 mM Mg2+. The rate equation using these equilibrium constants accurately predicts the extent of enzyme activation over a wide range of Ca2+ and calmodulin concentrations. The kinetic model and analytical techniques employed herein may be generally applicable to other enzymes with similar regulatory schemes.  相似文献   

14.
Monoclonal antibodies directed against rabbit skeletal muscle myosin light chain kinase have been used to study the domains of this kinase. Specificity of nine monoclonal antibodies against rabbit skeletal muscle myosin light chain kinase was demonstrated by immunoblot analysis and immunoadsorption of kinase activity. None of the antibodies reacted by immunoblot analysis with either chicken skeletal or rabbit smooth muscle myosin light chain kinases. Epitope mapping of trypsin-digested rabbit skeletal muscle myosin light chain kinase showed that antibodies 2a, 9a, 9b, 12a, 12b, 16a, and 16b are directed against the 40-kDa catalytic domain. In addition, these seven antibodies reacted with sites that are clustered within a 14-kDa fragment of the kinase generated by Staphylococcus aureus V8 protease digestion. Two monoclonal antibodies, 14a and 19a, reacted with two distinct epitopes located within the inactive, asymmetric trypsin fragment. Six of nine monoclonal antibodies (2a, 9a, 9b, 12a, 12b, and 14a) inhibited kinase activity. Kinetic analyses demonstrated that antibodies 2a, 12a, and 14a inhibited kinase activity competitively with respect to myosin phosphorylatable light chain; 2a, 12a, and 14a exhibit noncompetitive inhibition with respect to calmodulin. These data suggest that monoclonal antibodies 2a, 12a, and 14a bind at or adjacent to the active site of the kinase.  相似文献   

15.
The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca2+-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle. In general, the focus of the review is on new findings, unresolved issues, and areas with the potential for high physiological significance that need further study. The review includes a concise summary of the structure, substrates, and enzyme activity, followed by a discussion of the factors that may limit the effective activity of MLCK in the muscle. The interactions of each of the many domains of MLCK with the proteins of the contractile apparatus, and the multi-domain interactions of MLCK that may control its behaviors in the cell are summarized. Finally, new in vitro approaches to studying the mechanism of phosphorylation of myosin are introduced.  相似文献   

16.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle.  相似文献   

17.
Limited proteolysis has been utilized to study the structural organization of rabbit skeletal muscle myosin light chain kinase. The enzyme (Mr approximately 89,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) consists of an amino-terminal, protease-susceptible region of unidentified function and a carboxyl-terminal, protease-resistant region of Mr approximately 40,000 containing the catalytic and calmodulin-binding domains. Partial digestion with trypsin produced an intermediate 56,000-dalton fragment and a stable 38,000-dalton fragment, both of which were catalytically active and calmodulin-dependent. Chymotryptic digestion yielded three catalytically active fragments of about 37,000, 36,000, and 35,000 daltons. The Mr = 37,000 fragment was calmodulin-dependent with an apparent affinity equivalent to that of the native enzyme (approximately 1 nM). The 36,000-dalton fragment was also calmodulin-dependent but had a approximately 200-fold lower apparent affinity. The Mr = 35,000 fragment was calmodulin-independent. These three chymotryptic fragments, had identical amino termini. Nineteen residues were missing from the carboxyl terminus of the calmodulin-independent chymotryptic fragment whereas only 8 or 9 carboxyl-terminal residues were missing from the calmodulin-dependent tryptic fragments. These results suggest that the 11-residue sequence (IAVSAANRFKK) in the carboxyl-terminal region of myosin light chain kinase contributes directly to the binding of calmodulin. This conclusion is in accord with data (Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, K., Walsh, K. A., and Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3187-3191) that the carboxyl-terminal, 27-residue CNBr peptide of the native enzyme shows Ca2+-dependent, high affinity binding to calmodulin and that similar calmodulin-binding activity, although detectable in unfractionated CNBr digests of calmodulin-dependent enzyme forms, is much reduced in a CNBr digest of the calmodulin-independent, Mr = 35,000 chymotryptic fragment.  相似文献   

18.
Myosin light chain kinase purified from chicken white skeletal muscle (Mr = 150,000) was significantly larger than both rabbit skeletal (Mr = 87,000) and chicken gizzard smooth (Mr = 130,000) muscle myosin light chain kinases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Km and Vmax values with rabbit or chicken skeletal, bovine cardiac, and chicken gizzard smooth muscle myosin P-light chains were very similar for the chicken and rabbit skeletal muscle myosin light chain kinases. In contrast, comparable Km and Vmax data for the chicken gizzard smooth muscle myosin light chain kinase showed that this enzyme was catalytically very different from the two skeletal muscle kinases. Affinity-purified antibodies to rabbit skeletal muscle myosin light chain kinase cross-reacted with chicken skeletal muscle myosin light chain kinase, but the titer of cross-reacting antibodies was approximately 20-fold less than the anti-rabbit skeletal muscle myosin light chain kinase titer. There was no detectable antibody cross-reactivity against chicken gizzard myosin light chain kinase. Proteolytic digestion followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or high performance liquid chromatography showed that these enzymes are structurally very different with few, if any, overlapping peptides. These data suggest that, although chicken skeletal muscle myosin light chain kinase is catalytically very similar to rabbit skeletal muscle myosin light chain kinase, the two enzymes have different primary sequences. The two skeletal muscle myosin light chain kinases appear to be more similar to each other than either is to chicken gizzard smooth muscle myosin light chain kinase.  相似文献   

19.
Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca(2+) sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V(max) and K(M) for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.  相似文献   

20.
Role of myosin light chain kinase in muscle contraction   总被引:2,自引:0,他引:2  
In resting striated muscles of the rabbit muscle in vivo, the phosphorylatable light chain is partially phosphorylated. Tetanic stimulation increased the level of phosphorylation more rapidly in fast twitch than in slow twitch muscle. In both types of muscle the rate of dephosphorylation was relatively slow. In rabbit fast twitch muscles, phosphorylation levels persisted significantly above the resting value for some time after posttetanic potentiation had disappeared. The role of myosin light chain kinase in modulating contractile response in striated muscle is uncertain. In vertebrate smooth muscle the role of myosin phosphorylation appears to be different from that in striated muscle despite the general similarity of the actomyosin system in both tissues. Although phosphorylation in vitro increases the Mg2+ -ATPase of actomyosin, a number of features imply that a somewhat complex relationship exists between the level of phosphorylation and the actin activation of the Mg2+ -ATPase in vertebrate smooth muscle. Contrary to many earlier reports, preparations of smooth muscle actomyosin can be obtained with Mg2+ -ATPase activities comparable to those of actomyosin from skeletal muscle. Preliminary evidence is presented that suggests that phosphorylation changes the Ca2+ sensitivity of the Mg2+ -ATPase of smooth muscle actomyosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号