首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Patients with obstructive lung disease are exposed to expiratory loads (ELs) and dynamic hyperinflation as a consequence of expiratory flow limitation. To understand how these alterations in lung mechanics might affect cardiac function, we examined the influence of a 10-cm H2O EL, alone and in combination with voluntary hyperinflation (ELH), on pulmonary pressures [esophageal (Pes) and gastric (Pg)] and cardiac output (CO) in seven healthy subjects. CO was determined by using an acetylene method at rest and at 40 and 70% of peak work. At rest and during exercise, EL resulted in an increase in Pes and Pg (7-18 cm H2O; P < 0.05) and a decrease in CO (from 5.3 +/- 1.8 to 4.5 +/- 1.4, 12.2 +/- 2.2 to 11.2 +/- 2.2, and 16.3 +/- 3.3 to 15.2 +/- 3.2 l/min for rest, 40% peak work, and 70% peak work, respectively; P < 0.05), which remained depressed after an additional 2 min of EL. With ELH, CO increased at rest and both exercise loads (relative to EL only) but remained below control values. The changes in CO were due to a reduction in stroke volume with a tendency for stroke volume to fall further with prolonged EL. There was a negative correlation between CO and the increase in expiratory Pes and Pg with EL (R = -0.58 and -0.60; P < 0.01), whereas the rise in CO with subsequent hyperinflation was related to a more negative Pes (R = 0.72; P < 0.01). In conclusion, EL leads to a reduction in CO, which appears to be primarily related to increases in expiratory abdominal and intrathoracic pressure, whereas ELH resulted in an improved CO, suggesting that lung inflation has little impact on cardiac function.  相似文献   

3.
4.
The present study was conducted to determine the pattern of activation of the anterolateral abdominal muscles during the cough reflex. Electromyograms (EMGs) of the rectus abdominis, external oblique, internal oblique, transversus abdominis, and parasternal muscles were recorded along with gastric pressure in anesthetized cats. Cough was produced by mechanical stimulation of the lumen of the intrathoracic trachea or larynx. The pattern of EMG activation of these muscles during cough was compared with that during graded expiratory threshold loading (ETL; 1-30 cmH(2)O). ETL elicited differential recruitment of abdominal muscle EMG activity (transversus abdominis > internal oblique > rectus abdominis congruent with external oblique). In contrast, both laryngeal and tracheobronchial cough resulted in simultaneous activation of all four anterolateral abdominal muscles with peak EMG amplitudes 3- to 10-fold greater than those observed during the largest ETL. Gastric pressures during laryngeal and tracheobronchial cough were at least eightfold greater than those produced by the largest ETL. These results suggest that, unlike their behavior during expiratory loading, the anterolateral abdominal muscles act as a unit during cough.  相似文献   

5.
Humoral factors play an important role in the control of exercise hyperpnea. The role of neuromechanical ventilatory factors, however, is still being investigated. We tested the hypothesis that the afferents of the thoracopulmonary system, and consequently of the neuromechanical ventilatory loop, have an influence on the kinetics of oxygen consumption (VO2), carbon dioxide output (VCO2), and ventilation (VE) during moderate intensity exercise. We did this by comparing the ventilatory time constants (tau) of exercise with and without an inspiratory load. Fourteen healthy, trained men (age 22.6 +/- 3.2 yr) performed a continuous incremental cycle exercise test to determine maximal oxygen uptake (VO2max = 55.2 +/- 5.8 ml x min(-1) x kg(-1)). On another day, after unloaded warm-up they performed randomized constant-load tests at 40% of their VO2max for 8 min, one with and the other without an inspiratory threshold load of 15 cmH2O. Ventilatory variables were obtained breath by breath. Phase 2 ventilatory kinetics (VO2, VCO2, and VE) could be described in all cases by a monoexponential function. The bootstrap method revealed small coefficients of variation for the model parameters, indicating an accurate determination for all parameters. Paired Student's t-tests showed that the addition of the inspiratory resistance significantly increased the tau during phase 2 of VO2 (43.1 +/- 8.6 vs. 60.9 +/- 14.1 s; P < 0.001), VCO2 (60.3 +/- 17.6 vs. 84.5 +/- 18.1 s; P < 0.001) and VE (59.4 +/- 16.1 vs. 85.9 +/- 17.1 s; P < 0.001). The average rise in tau was 41.3% for VO2, 40.1% for VCO2, and 44.6% for VE. The tau changes indicated that neuromechanical ventilatory factors play a role in the ventilatory response to moderate exercise.  相似文献   

6.
7.
We hypothesized that the hyperinflation and pulmonary dysfunction of cystic fibrosis (CF) would distort feedback and therefore alter the abdominal muscle response to graded expiratory threshold loads (ETLs). We compared the respiratory and abdominal muscle responses with graded ETLs of seven CF patients with severe lung dysfunction with those of matched healthy control subjects in the supine and 60 degrees head-up positions. Breathing frequency, tidal volume, and ventilatory timing were determined from inspiratory flow recordings. Abdominal electromyograms (EMGs) were detected with surface electrodes placed unilaterally over the external and internal oblique and the rectus abdominis muscles. Thresholds, times of onset, and durations of phasic abdominal activity were determined from raw EMGs; peak amplitudes were determined from integrated EMGs. Graded ETLs were imposed by submerging a tube from the expiratory port of the breathing valve into a column of water at depths of 0-25 cmH2O. We found that breathing frequency, tidal volume, and expired minute ventilation were higher in CF patients than in control subjects during low ETLs; a change in body position did not alter these ventilatory responses in the CF patients but did in the control subjects. All CF patients, but none of the control subjects, had tonic abdominal activity while supine. CF patients recruited abdominal muscles at lower loads, earlier in the respiratory cycle, and to a higher recruitment level in both positions than the control subjects, but burst duration of phasic activity was not different between groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
This study compared the effects of inspiring either a hyperoxic (60% O(2)) or normoxic gas (21% O(2)) while cycling at 70% peak O(2) uptake on 1) the ATP derived from substrate phosphorylation during the initial minute of exercise, as estimated from phosphocreatine degradation and lactate accumulation, and 2) the reliance on carbohydrate utilization and oxidation during steady-state cycling, as estimated from net muscle glycogen use and the activity of pyruvate dehydrogenase (PDH) in the active form (PDH(a)), respectively. We hypothesized that 60% O(2) would decrease substrate phosphorylation at the onset of exercise and that it would not affect steady-state exercise PDH activity, and therefore muscle carbohydrate oxidation would be unaltered. Ten active male subjects cycled for 15 min on two occasions while inspiring 21% or 60% O(2), balance N(2). Blood was obtained throughout and skeletal muscle biopsies were sampled at rest and 1 and 15 min of exercise in each trial. The ATP derived from substrate-level phosphorylation during the initial minute of exercise was unaffected by hyperoxia (21%: 52.2 +/- 11.1; 60%: 54.0 +/- 9.5 mmol ATP/kg dry wt). Net glycogen breakdown during 15 min of cycling was reduced during the 60% O(2) trial vs. 21% O(2) (192.7 +/- 25.3 vs. 138.6 +/- 16.8 mmol glycosyl units/kg dry wt). Hyperoxia had no effect on PDH(a), because it was similar to the 21% O(2) trial at rest and during exercise (21%: 2.20 +/- 0.26; 60%: 2.25 +/- 0.30 mmol.kg wet wt(-1).min(-1)). Blood lactate was lower (6.4 +/- 1.0 vs. 8.9 +/- 1.0 mM) at 15 min of exercise and net muscle lactate accumulation was reduced from 1 to 15 min of exercise in the 60% O(2) trial compared with 21% (8.6 +/- 5.1 vs. 27.3 +/- 5.8 mmol/kg dry wt). We concluded that O(2) availability did not limit oxidative phosphorylation in the initial minute of the normoxic trial, because substrate phosphorylation was unaffected by hyperoxia. Muscle glycogenolysis was reduced by hyperoxia during steady-state exercise, but carbohydrate oxidation (PDH(a)) was unaffected. This closer match between pyruvate production and oxidation during hyperoxia resulted in decreased muscle and blood lactate accumulation. The mechanism responsible for the decreased muscle glycogenolysis during hyperoxia in the present study is not clear.  相似文献   

9.
We determined the effects of augmented expiratory intrathoracic pressure (P(ITP)) production on cardiac output (Q(TOT)) and blood flow distribution in healthy dogs and dogs with chronic heart failure (CHF). From a control expiratory P(ITP) excursion of 7 +/- 2 cmH2O, the application of 5, 10, or 15 cmH2O expiratory threshold loads increased the expiratory P(ITP) excursion by 47 +/- 23, 67 +/- 32, and 118 +/- 18% (P < 0.05 for all). Stroke volume (SV) rapidly decreased (onset <10 s) with increases in the expiratory P(ITP) excursion (-2.1 +/- 0.5%, -2.4 +/- 0.9%, and -3.6 +/- 0.7%, P < 0.05), with slightly smaller reductions in Q(TOT) (0.8 +/- 0.6, 1.0 +/- 1.1, and 1.8 +/- 0.8%, P < 0.05) owing to small increases in heart rate. Both Q(TOT) and SV were restored to control levels when the inspiratory P(ITP) excursion was augmented by the addition of an inspiratory resistive load during 15 cmH2O expiratory threshold loading. The highest level of expiratory loading significantly reduced hindlimb blood flow by -5 +/- 2% owing to significant reductions in vascular conductance (-7 +/- 2%). After the induction of CHF by 6 wk of rapid cardiac pacing at 210 beats/min, the expiratory P(ITP) excursions during nonloaded breathing were not significantly changed (8 +/- 2 cmH2O), and the application of 5, 10, and 15 cmH2O expiratory threshold loads increased the expiratory P(ITP) excursion by 15 +/- 7, 23 +/- 7, and 31 +/- 7%, respectively (P < 0.05 for all). Both 10 and 15 cmH2O expiratory threshold loads significantly reduced SV (-3.5 +/- 0.7 and -4.2 +/- 0.7%, respectively) and Q(TOT) (-1.7 +/- 0.4 and -2.5 +/- 0.4%, P < 0.05) after the induction of CHF, with the reductions in SV predominantly occurring during inspiration. However, the augmentation of the inspiratory P(ITP) excursion now elicited further decreases in SV and Q(TOT). Only the highest level of expiratory loading significantly reduced hindlimb blood flow (-4 +/- 2%) as a result of significant reductions in vascular conductance (-5 +/- 2%). We conclude that increases in expiratory P(ITP) production-similar to those observed during severe expiratory flow limitation-reduce cardiac output and hindlimb blood flow during submaximal exercise in health and CHF.  相似文献   

10.
Effects of expiratory loading on respiration in humans   总被引:1,自引:0,他引:1  
  相似文献   

11.
We examined the effects of expiratory resistive loads of 10 and 18 cmH2O.l-1.s in healthy subjects on ventilation and occlusion pressure responses to CO2, respiratory muscle electromyogram, pattern of breathing, and thoracoabdominal movements. In addition, we compared ventilation and occlusion pressure responses to CO2 breathing elicited by breathing through an inspiratory resistive load of 10 cmH2O.l-1.s to those produced by an expiratory load of similar magnitude. Both inspiratory and expiratory loads decreased ventilatory responses to CO2 and increased the tidal volume achieved at any given level of ventilation. Depression of ventilatory responses to Co2 was greater with the larger than with the smaller expiratory load, but the decrease was in proportion to the difference in the severity of the loads. Occlusion pressure responses were increased significantly by the inspiratory resistive load but not by the smaller expiratory load. However, occlusion pressure responses to CO2 were significantly larger with the greater expiratory load than control. Increase in occlusion pressure observed could not be explained by changes in functional residual capacity or chemical drive. The larger expiratory load also produced significant increases in electrical activity measured during both inspiration and expiration. These results suggest that sufficiently severe impediments to breathing, even when they are exclusively expiratory, can enhance inspiratory muscle activity in conscious humans.  相似文献   

12.
We investigated the relationship between minute ventilation (VE) and net respiratory muscle pressure (Pmus) throughout the breathing cycle [Total Pmus = mean Pmus, I (inspiratory) + mean Pmus, E (expiratory)] in six normal subjects performing constant-work heavy exercise (CWHE, at approximately 80% maximum) to exhaustion on a cycle ergometer. Pmus was calculated as the sum of chest wall pressure (elastic + resistive) and pleural pressure, and all mean Pmus variables were averaged over the total breath duration. Pmus, I was also expressed as a fraction of volume-matched, flow-corrected dynamic capacity of the inspiratory muscles (P(cap, I)). VE increased significantly from 3 min to the end of CWHE and was the result of a significantly linear increase in Total Pmus (Delta = 43 +/- 9% from 3 min to end exercise, P < 0.005) in all subjects (r = 0. 81-0.99). Although mean Pmus, I during inspiratory flow increased significantly (Delta = 35 +/- 10%), postinspiratory Pmus, I fell (Delta = -54 +/- 10%) and postexpiratory expiratory activity was negligible or absent throughout CWHE. There was a greater increase in mean Pmus, E (Delta = 168 +/- 48%), which served to increase VE throughout CWHE. In five of six subjects, there were significant linear relationships between VE and mean Pmus, I (r = 0.50-0.97) and mean Pmus, E (r = 0.82-0.93) during CWHE. The subjects generated a wide range of Pmus, I/P(cap, I) values (25-80%), and mean Pmus, I/P(cap, I) increased significantly (Delta = 42 +/- 16%) and in a linear fashion (r = 0.69-0.99) with VE throughout CWHE. The progressive increase in VE during CWHE is due to 1) a linear increase in Total Pmus, 2) a linear increase in inspiratory muscle load, and 3) a progressive fall in postinspiratory inspiratory activity. We conclude that the relationship between respiratory muscle pressure and VE during exercise is linear and not curvilinear.  相似文献   

13.
A continuous-flow sampling system (CFS) for convenient and rapid determination of respiratory gas exchange during steady-state exercise was described. CFS was compared to the classical bag collection system (BCS) by utilizing both methods concurrently during exercise for analysis of 32 1-min gas samples. The gas collected by BCS was analyzed by chemical absorption. The error in the gas mixing and sampling technique of CFS contributed to the absolute error of the gas analysis but did not adversely affect the reliability. The linear regression analysis on the data suggests that CFS is a relatively accurate and reliable system for use at light and moderate levels of steady-state work. However, it is hypothesized that unsteady-state conditions and heavy exercise, which elicits high ventilation rates, would compromise the accuracy and reliability of CFS. Therefore, it is recommended that the traditional BCS be utilized for determination of maximal oxygen uptake.  相似文献   

14.
15.
Fee, Lawrence L., Richard M. Smith, and Michael B. English.Enhanced ventilatory and exercise performance in athletes withslight expiratory resistive loading. J. Appl.Physiol. 83(2): 503-510, 1997.We determined thecardiorespiratory and performance effects of slight (1.5-3.0cmH2O) expiratory resistiveloading (ERL). Twenty-eight highly fit [peakO2 uptake(O2 peak) = 63.6 ± 1.3 ml · kg1 · min1]athletes (age = 33.5 ± 1.3 yr) performed pairedO2 peak cycle ergometer tests (control vs. ERL). End-expiratory lung volume wasseparately determined in a subset of subjects(n = 12) at steady-state 75% maximumpower output (POmax) and wasfound to increase (0.67 ± 0.29 liter) with ERL. In theO2 peaktests, peak expiratory pressure at the mouth, mean inspiratory flow, minute ventilation, and O2 pulsewere greater with ERL at every intensity level (i.e., 75, 80, 85, and90% POmax). Increased minute ventilation was largely due to a trend toward increased tidal volume(P < 0.05 at 80%POmax).O2 uptake was greater at 90%POmax with ERL. IncreasedO2 pulse with ERL at comparativeworkloads suggests that stroke volume was augmented with ERL. Also,with ERL, athletes attained higherO2 peak (63.0 ± 1.4 vs. 60.1 ± 1.3 ml · kg1 · min1)and greater POmax (352.0 ± 9.9 vs. 345.7 ± 9.5 W). We conclude that elevated end-expiratory lungvolume in response to slight ERL during strenuous exercise served toattenuate both airflow and blood flow limitations, which enhancedexercise capacity.

  相似文献   

16.
17.
Effects of expiratory resistive loading on the sensation of dyspnea   总被引:1,自引:0,他引:1  
To determine whether an increase in expiratory motor output accentuates the sensation of dyspnea (difficulty in breathing), the following experiments were undertaken. Ten normal subjects, in a series of 2-min trials, breathed freely (level I) or maintained a target tidal volume equal to (level II) or twice the control (level III) at a breathing frequency of 15/min (similar to the control frequency) with an inspiratory load, an expiratory load, and without loads under hyperoxic normocapnia. In tests at levels II and III, end-expiratory lung volume was maintained at functional residual capacity. A linear resistance of 25 cmH2O.1(-1).s was used for both inspiratory and expiratory loading; peak mouth pressure (Pm) was measured, and the intensity of dyspnea (psi) was assessed with a visual analog scale. The sensation of dyspnea increased significantly with the magnitude of expiratory Pm during expiratory loading (level II: Pm = 9.4 +/- 1.5 (SE) cmH2O, psi = 1.26 +/- 0.35; level III: Pm = 20.3 +/- 2.8 cmH2O, psi = 2.22 +/- 0.48) and with inspiratory Pm during inspiratory loading (level II: Pm = 9.7 +/- 1.2 cmH2O, psi = 1.35 +/- 0.38; level III: Pm = 23.9 +/- 3.0 cmH2O, psi = 2.69 +/- 0.60). However, at each level of breathing, neither the intensity of dyspnea nor the magnitude of peak Pm during loading was different between inspiratory and expiratory loading. The augmentation of dyspnea during expiratory loading was not explained simply by increases in inspiratory activity. The results indicate that heightened expiratory as well as inspiratory motor output causes comparable increases in the sensation of difficulty in breathing.  相似文献   

18.
19.
20.
Detection of expiratory flow limitation during exercise in COPD patients   总被引:7,自引:0,他引:7  
Koulouris, Nickolaos G., Ioanna Dimopoulou, PäiviValta, Richard Finkelstein, Manuel G. Cosio, and J. Milic-Emili.Detection of expiratory flow limitation during exercise in COPDpatients. J. Appl. Physiol. 82(3):723-731, 1997.The negative expiratory pressure (NEP) method wasused to detect expiratory flow limitation at rest and at differentexercise levels in 4 normal subjects and 14 patients with chronicobstructive pulmonary disease (COPD). This method does not requireperformance of forced expirations, nor does it require use of bodyplethysmography. It consists in applying negative pressure (5cmH2O) at the mouth during early expiration and comparing the flow-volume curve of the ensuing expiration with that of the preceding control breath. Subjects in whomapplication of NEP does not elicit an increase in flow during part orall of the tidal expiration are considered flow limited. The fournormal subjects were not flow limited up to 90% of maximal exercisepower output(max).Five COPD patients were flow limited at rest, 9 were flow limited atone-third max, and 12 were flow limited at two-thirdsmax. Whereasin all patients who were flow limited at rest the maximalO2 uptake was below the normallimits, this was not the case in most of the other patients. Inconclusion, NEP provides a rapid and reliable method to detectexpiratory flow limitation at rest and during exercise.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号