首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1989,28(25):9685-9691
Electron spin resonance (ESR) spectroscopy and chemical binding assays were used to study the interaction of bovine spinal cord myelin basic protein (MBP) with dimyristoylphosphatidylglycerol (DMPG) membranes. Increasing binding of MBP to DMPG bilayers resulted in an increasing motional restriction of PG spin-labeled at the C-5 atom position in the acyl chain, up to a maximum degree of association of 1 MBP molecule per 36 lipid molecules. ESR spectra of PG spin-labels labeled at other positions in the sn-2 chain showed a similar motional restriction, while still preserving the chain flexibility gradient characteristic of fluid lipid bilayers. In addition, labels at the C-12 and C-14 atom positions gave two-component spectra, suggesting a partial hydrophobic penetration of the MBP into the bilayer. Spectral subtractions were used to quantitate the membrane penetration in terms of the stoichiometry of the lipid-protein complexes. Approximately 50% of the spin-labeled lipid chains were directly affected at saturation protein binding. The salt and pH dependence of the ESR spectra and of the protein binding demonstrated that electrostatic interaction of the basic residues of the MBP with the PG headgroups is necessary for an effective association of the MBP with phospholipid bilayers. Binding of the protein, and concomitant perturbation of the lipid chain mobility, was reduced as the ionic strength increased, until at salt concentrations above 1 M NaCl the protein was no longer bound. The binding and ESR spectral perturbation also decreased as the protein charge was reduced by pH titration to above the pI of the protein at approximately pH 10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Separation of ovotransferrin into C-terminal (OTf/2C) and N-terminal (OTf/2N) half-molecules has made possible the resolution of all expected histidinyl C(2)H resonances by proton nuclear magnetic resonance at 250 MHz. The chemical shift of many of the resonances decreases with increasing pH, allowing construction of titration curves, whereas a few resonances fail to titrate. On formation of the GaIIIOTf/2(C2O4) ternary complexes, two of the low-field C(2)H resonances in each half-molecule fail to titrate. This behavior implicates the imidazole groups giving rise to these resonances as ligands to the bound metal ion. A third C(2)H resonance in each half-molecule undergoes a marked reduction in pK'a on formation of the ternary complex. The imidazole group displaying this resonance is implicated in a proton-relay scheme involved in binding the synergistic anion, oxalate, and a water of hydration on the bound metal ion. The titration curves for the various imidazole resonances have been fit to a four-parameter equation involving estimation of the pK'a, the limiting chemical shift values, and a Hill constant n. Hill constants of less than 1 can be rationalized by correcting the titration curve for the charge Z on the protein as a function of pH and the work function w. The titration curve for the imidazole group in OTf/2C involved in the proton-relay scheme shows a value for n greater than 1, which suggests positive cooperativity in the titration of this residue. The basis for this behavior cannot be rationalized at this time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
D Peyton  V Sardana  E Breslow 《Biochemistry》1987,26(6):1518-1525
Perdeuteriated peptides were synthesized that are capable of binding to the hormone binding site of neurophysin but that differ in the position of aromatic residues. The binding of these peptides to bovine neurophysin I and its des-1-8 derivative was studied by proton nuclear magnetic resonance spectroscopy in order to identify protein residues near the binding site through the observation of differential ring current effects on assignable protein resonances. Phenylalanine in position 3 of bound peptides was shown to induce significant ring current shifts in several resonances assignable to the 1-8 sequence, including those of Leu-3 and/or Leu-5, but was without effect on Tyr-49 ring protons. The magnitude of these shifts was dependent on the identity of peptide residue 1. By contrast, the sole demonstrable direct effect of an aromatic residue in position 1 was a downfield shift in Tyr-49 ring protons. Study of peptide binding to des-1-8-neurophysin demonstrated similar conformations of native and des-1-8 complexes except for the environment of Tyr-49, confirmed the peptide-induced ring current shift assignments in native neurophysin, and indicated an effect of binding on Thr-9. These observations are integrated with other results to provide a partial model of neurophysin-peptide complexes that places the ring of Tyr-49 at a distance 5-10 A from residue 1 of bound peptide and that places both the 1-8 sequence and the protein backbone region containing Tyr-49 proximal to each other and to peptide residue 3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
K Gehring  K Bao  H Nikaido 《FEBS letters》1992,300(1):33-38
We have used UV absorbance spectroscopy to study the binding of linear and circular maltodextrins to maltose-binding protein (MBP). Titrations with maltose yield three isosbestic points in the difference spectrum of MBP, consistent with two protein conformations: ligand-free and ligand-bound. In contrast, titrations with maltotetraose reveal three conformations: ligand-free, a low-affinity liganded state, and a high affinity liganded state. These results confirm and extend the results from tritium NMR spectroscopy, namely, that MBP can bind maltodextrin either by the sugar's anomeric end (high affinity) or by the middle of the maltodextrin chain (low affinity).  相似文献   

5.
The affinity of maltose-binding protein (MBP) for maltose and related carbohydrates was greatly increased by removal of groups in the interface opposite the ligand binding cleft. The wild-type protein has a KD of 1200 nM for maltose; mutation of residues Met-321 and Gln-325, both to alanine, resulted in a KD for maltose of 70 nM; deletion of 4 residues, Glu-172, Asn-173, Lys-175, and Tyr-176, which are part of a poorly ordered loop, results in a KD for maltose of 110 nM. Combining the mutations yields an increased affinity for maltodextrins and a KD of 6 nM for maltotriose. Comparison of ligand binding by the mutants, using surface plasmon resonance spectroscopy, indicates that decreases in the off-rate are responsible for the increased affinity. Small-angle x-ray scattering was used to demonstrate that the mutations do not significantly affect the solution conformation of MBP in either the presence or absence of maltose. The crystal structures of selected mutants showed that the mutations do not cause significant structural changes in either the closed or open conformation of MBP. These studies show that interactions in the interface opposite the ligand binding cleft, which we term the "balancing interface," are responsible for modulating the affinity of MBP for its ligand. Our results are consistent with a model in which the ligand-bound protein alternates between the closed and open conformations, and removal of interactions in the balancing interface decreases the stability of the open conformation, without affecting the closed conformation.  相似文献   

6.
Maltooligosaccharides up to maltoheptaose are transported by the maltodextrin transport system of Escherichia coli. The overall substrate specificity of the transport system was investigated by using 15 maltodextrin analogues with various modifications at the reducing end of the oligosaccharides as competing substrates. The binding interaction of the analogues with maltoporin in the outer membrane and the periplasmic maltose-binding protein, the two protein components of the transport system with known specificity for maltodextrins, was also investigated. All analogues containing several α,1 → 4-glucosyl linkages were bound with high affinity by maltoporin and maltose-binding protein, regardless of O-methyl, O-nitrophenyl, β-glucosyl or β-fructosyl substitutions at the reducing end of the dextrins. Introduction of a negative charge or lack of a ring structure at the reducing end were also ineffective in abolishing binding by these two proteins. These results suggest that the structure of the reducing glucose is not important in the binding specificity of maltoporin or maltose-binding protein. However, the high affinity of these proteins for analogues was not in itself sufficient for recognition by the transport system overall. Maltohexaitol, 4-nitrophenyl α-maltotetraoside and 4-β-d-maltopentaosyl-d-glucopyranose were bound with the same affinity as comparable maltodextrins by both maltoporin and maltose-binding protein but were poorly recognized by the transport system. These results suggest that another, yet uninvestigated component of the transport system has a more restricted specificity towards changes at the reducing end of the maltodextrin molecule.  相似文献   

7.
The periplasmic maltose-binding protein (MBP or MalE protein) of Escherichia coli is an essential element in the transport of maltose and maltodextrins and in the chemotaxis towards these sugars. On the basis of previous results suggesting their possible role in the activity and fluorescence of MBP, we have changed independently to alanine each of the eight tryptophan residues as well as asparagine 294, which is conserved among four periplasmic sugar-binding proteins. Five of the tryptophan mutations affected activity. In four cases (substitution of Trp62, Trp230, Trp232 and Trp340), there was a decrease in MBP affinity towards maltose correlated with modifications in transport and chemotaxis. According to the present state of the 2.3 A three-dimensional structure of MBP, all four residues are in the binding site. Residues Trp62 and Trp340 are in the immediate vicinity of the bound substrate and appear to have direct contacts with maltose; this is in agreement with the drastic increases in Kd values (respectively 67 and 300-fold) upon their substitution by alanine residues. The modest increase in Kd (12-fold) observed upon mutation of Trp230 would be compatible with the lesser degree of interaction this residue has with the bound substrate and the idea that it plays an indirect role, presumably by keeping other residues involved directly in binding in their proper orientation. Substitution of Trp232 resulted in a small increase in Kd value (2-fold) in spite of the fact that this residue is the closest to the ligand of the tryptophan residues according to the three-dimensional model. In the fifth case, replacement of Trp158, which is distant from the binding site, strongly reduced the chemotactic response towards maltose without affecting the transport parameters or the sugar-binding activities of the mutant protein. Trp158 may therefore be specifically implicated in the interaction of MBP with the chemotransducer Tar, but this effect is likely to be indirect, since Trp158 is buried in the structure of MBP. Of course, some structural rearrangements could be responsible in part for the effects of these mutations. The remaining four mutations were silent. The corresponding residues (Trp10, Trp94, Trp129 and Asn294) are all distant from the sugar-binding site on the crystallographic model of MBP, which is in agreement with their lack of effect on binding. In addition, our results show that they play no role in the interactions with the other proteins of the maltose transport (MalF, MalG or MalK) or chemotaxis (Tar) systems.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The metal binding sites of a gamma-carboxyglutamic acid-rich fragment derived from bovine prothrombin were examined using paramagnetic lanthanide ions to evaluate the role of gamma-carboxyglutamic acid resideus in metal binding. A gamma-carboxyglutamic acid-rich peptide, fragment 12-44, was isolated from a tryptic digest of prothrombin. Using 153Gd(III), fragment 12-44 was found to contain one high affinity metal binding site (KD = 0.55 microM) and four to six lower affinity metal binding sites (KD approximately 4 to 8 microM). The S-carboxymethyl derivative of fragment 12-44, in which the disulfide bond in fragment 12-44 was reduced and alkylated, contained no high affinity metal binding site and four or five lower affinity sites (KD = 8 microM). The effects of paramagnetic lanthanide ions on fragment 12-44 and its S-carboxymethyl derivative were studied by natural abundance 13C NMR spectroscopy. The 13C NMR spectrum of fragment 12-44 was recorded at 67.88 MHz and the resonances were assigned by comparison to the chemical shift of carbon resonances of amino acids and peptides previously studied. The proximity between bound metal ions and carbon atoms in fragment 12-44 was estimated using Gd(III), based upon the strategy that the magnitude of the change in the transverse relaxation rate of resonances of carbon nuclei induced by bound metal ions is related in part to the interatomic distances between bound metal and carbon nuclei. Titration of fragment 12-44 with Gd(III) resulted in the selective broadening of the gamma-carboxyl carbon, C gamma, C beta, and C alpha resonances of gamma-carboxyglutamic acid, and the C epsilon of the arginines. S-Carboxymethyl fragment 12-44, which lacked the high affinity metal binding site, showed markedly decreased perturbation of the C epsilon of the arginine residues upon titration with Gd(III). These studies indicate that gamma-carboxyglutamic acid residues in prothrombin fragment 12-44 participate in metal liganding. A high affinity metal binding site in fragment 12-44 is in close proximity of Arg 16 and Arg 25 and is stabilized by the disulfide bond. On the basis of these data, a model of the metal binding sites is proposed in which the high affinity site is composed of two gamma-carboxyglutamic acid residues which participate in intramolecular metal-dependent bridging of two regions of the polypeptide chain. The lower affinity metal binding sites, formed by single or paired adjacent gamma-carboxyglutamic acid residues, then may participate in intermolecular metal-dependent protein . protein or protein . membrane complex formation.  相似文献   

9.
Rat cellular retinol binding protein (CRBP II) is a 134-amino acid intracellular protein synthesized in the polarized absorptive cells of the intestine. We have previously used 19F nuclear magnetic resonance (NMR) spectroscopy to survey the structural effects of ligand binding on the apoprotein. For these studies, all 4 Trp residues of rat CRBP II were efficiently labeled with 6-fluorotryptophan (6-F-Trp) by inducing its expression in a tryptophan auxotroph of Escherichia coli. Resonances corresponding to 2 of its Trp residues underwent large downfield shifts upon binding of all-trans-retinol and retinal, while resonances corresponding to the other 2 Trp residues underwent only minor perturbations in chemical shifts. To identify which Trp residues undergo changes in their environment upon ligand binding, we have constructed four CRBP II mutants where Trp9, Trp89, Trp107, or Trp110 have been replaced by another hydrophobic amino acid. By comparing the 19F NMR spectrum of each 6-F-Trp-labeled mutant with that of wild type 6-F-Trp CRBP II, we demonstrate that the 19F resonance corresponding to Trp107 undergoes the largest change in chemical shift upon ligand binding (2.0 ppm downfield). This is consistent with the position of this residue predicted from molecular modeling studies. The 19F resonance corresponding to Trp9 also undergoes a downfield change in chemical shift of 0.5 ppm associated with retinol binding even though it is predicted to be removed from the ligand binding site. By contrast, the resonances assigned to Trp89 and Trp110 undergo only minor perturbations in chemical shifts. These results have allowed us to identify residue-specific probes for evaluating the interactions of all-trans-retinol (and other retinoids) with this intracellular binding protein.  相似文献   

10.
Helical complexes formed between fd DNA and reductively methylated fd gene 5 protein were indistinguishable by electron microscopy from complexes formed with the nonmethylated protein. 13C NMR spectroscopy of 13C-enriched N epsilon, N epsilon-dimethyllsyl residues of the protein showed that three of these residues (Lys-24, Lys-46, and Lys-69) were selectively perturbed by binding of the oligomer d(pA)7. These were the same lysyl residues that we previously found to be most protected from methylation by binding of the protein to poly[r(U)] [Dick, L. R., Sherry, A. D., Newkirk, M. M., & Gray D. M. (1988) J. Biol. Chem. 263, 18864-18872]. Thus, these lysines are probably directly involved in the nucleic acid binding function of the protein. Negatively charged chelates of lanthanide ions were used to perturb the 13C NMR resonances of labeled lysyl and amino-terminal residues of the gene 5 protein. The terbium chelate was found to bind tightly (Ka approximately 10(5) M-1) to the protein with a stoichiometry of 1 chelate molecule per protein dimer. 13C resonances of Lys-24, Lys-46, and Lys-69 were maximally shifted by the terbium chelate and were maximally relaxed by the gadolinium chelate. Also, the terbium chelate was excluded by the oligomer d(pA)7. Computer fits of the induced chemical shifts of 13C resonances with those expected for various positions of the terbium chelate failed to yield a possible chelate binding site unless the chemical shift for Lys-24 was excluded from the fitting process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1989,28(25):9692-9698
The myelin basic protein (MBP) from bovine spinal cord was cleaved at the single tryptophan residue to produce an N-terminal fragment (F1) of molecular weight 12.6K and a C-terminal fragment (F2) of molecular weight 5.8K. The interactions of the two fragments with bilayers of the acidic lipid dimyristoylphosphatidylglycerol (DMPG) were compared with those of the intact protein, by using both chemical binding assays and spin-label electron spin resonance spectroscopy. The saturation binding stoichiometries of the two fragments were found to sum to that of the MBP, having values of 11, 24, and 36 mol of DMPG/mol of protein for F2, F1, and the MBP, respectively. The strength of binding was found to increase in the order F2 less than F1 less than MBP, which follows that of the net charges on the different fragments. The ionic strength dependence of the protein binding indicated that the interaction is primarily of electrostatic origin. The efficiency of displacement of the proteins by salt was in the order F2 greater than F1 greater than MBP, which correlates with both the strength of binding and the net charge on the different protein fragments. Nitroxide derivatives of phosphatidylglycerol (PG) labeled on the sn-2 chain were used to probe the protein-induced changes in the acyl chain dynamics. Both the fragments and the MBP decreased the lipid chain mobility as recorded by the C-5 atom and C-12 atom position nitroxide-PG spin-labels, in a manner which followed the protein binding curves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The malE gene encodes the periplasmic maltose-binding protein (MBP). Nineteen mutations that still permit synthesis of stable MBP were generated by random insertion of a BamHI octanucleotide into malE and six additional mutations by in-vitro recombinations between mutant genes. The sequence changes were determined; in most cases the linker insertion is accompanied by a small deletion (30 base-pairs on average). The mutant MBP were studied for export, growth on maltose and maltodextrins, maltose transport and binding, and maltose-induced fluorescence changes. Sixteen mutant MBP (out of 21 studied in detail) were found in the periplasmic space: 12 of them retained a high affinity for maltose, and 10 activity for growth on maltose. The results show that several regions of MBP are dispensable for stability, substrate binding and export. Three regions (residues 207 to 220, 297 to 303 and 364 to 370) may be involved in interactions with the MalF or MalG proteins. A region near the C-terminal end is important for maltose binding. Two regions of the mature protein (residues 18 to 42 and 280 to 296) are required for export to, or solubility in, the periplasm.  相似文献   

13.
I Ringel  H Sternlicht 《Biochemistry》1984,23(23):5644-5653
A 13C nuclear magnetic resonance study of bovine microtubule protein was carried out at 43 kG in the presence and absence of colchicine 13C labeled at the tropolone methoxy. Analysis indicated that tubulin has at least two colchicine binding sites: a quasi-irreversibly bound, high-affinity site (i.e., the KD less than 5 microM site generally accepted as the site of colchicine action) as well as a low-affinity site(s) (KD approximately 650 microM) with which free colchicine rapidly exchanges (greater than 100 s-1). The methoxy resonance is broadened to different apparent extents as a result of binding at these two sites (50- vs. 150-Hz broadening for the high- and low-affinity sites, respectively) but undergoes no change in chemical shift upon binding. The low-affinity sites are interpreted to be analogous to the sites deduced by Schmitt and Atlas [Schmitt, H., & Atlas, D. (1976) J. Mol. Biol. 102, 743-758] from labeling studies using bromocolchicine. These sites are likely to be the sites responsible for the abrupt halt in microtubule assembly ("capping") observed at high colchicine concentrations (greater than 20 microM)--a qualitatively different behavior from that observed at low colchicine concentrations [Sternlicht, H., Ringel, I., & Szasz, J. (1983) Biophys. J. 42, 255-267]. Carbon-13 spectra from the aliphatic carbons of microtubule protein consists of narrow resonances--many with line widths less than 30 Hz--superimposed on a broad background. The narrow resonances were assigned to flexible regions in nontubulin proteins [microtubule-associated proteins (MAPs)], in accord with an earlier 1H nuclear magnetic resonance study of microtubule protein [Woody, R. W., Clark, D. C., Roberts, G. C. K., Martin, S. R., & Bayley, P. M. (1983) Biochemistry 22, 2186-2192]. This assignment was supported by 13C NMR analysis of phosphocellulose-purified (MAP-depleted) tubulin as well as heat-stable MAPs. Aliphatic carbons in the MAP preparations were characterized by narrow resonances indicative of carbons with considerable motional freedom whereas the aliphatic regions of phosphocellulose-purified tubulin were, for the most part, characterized by broad resonances indicative of carbons with restricted mobility. However, a moderately narrow resonance (approximately less than 50-Hz line width) coincident with the C gamma resonance of glutamate was detected in 13C NMR spectra of tubulin which indicated that a fraction of the glutamic acid residues is relatively mobile.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The 1H (500-MHz), 113Cd (44-MHz), and 31P (81-MHz) NMR spectra of the bovine gamma-carboxyglutamate- (Gla-) containing protein osteocalcin and its Ca(II) and Cd(II) complexes in solution have been obtained. The 1H NMR spectrum of the native protein shows narrow resonances and a highly resolved multiplet structure suggesting rotational freedom of the side chains. In comparison to the simulated 1H NMR spectrum of a random polypeptide chain of the same amino acid composition, there is moderate chemical shift dispersion, indicating some conformational restraints to be present. Ca(II) binding broadens all 1H resonances, so severely at four Ca(II) ions per molecule that few structural conclusions can be made. Cd(II) substituted for Ca(II) has the same effect, and 113Cd NMR shows the Cd(II) to be in intermediate chemical exchange on the chemical shift time scale. Estimates of the chemical exchange rates required for 1H and 113Cd line broadening suggest a range of Kd values for the metal ion complexes from 10(-6) M to as high as 10(-3) M depending on the number of metal ions bound. Alternatively, 1H line broadening could be explained by relatively slow conformational fluxes in the protein induced by labile metal ion binding to one or more sites. Cd(II) when used to form a cadmium-phosphate mineral analogous to hydroxylapatite results in a crystal lattice that removes osteocalcin from solution just as effectively as hydroxylapatite. 113Cd(II) exchange at the binding sites of osteocalcin in solution is slowed dramatically by the addition of HPO4(2-). 31P NMR shows the interaction of phosphate with the protein to require the metal ion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A vitamin B12-binding protein (haptocorrin) from chicken serum has been purified to homogeneity by photodissociative affinity chromatography and characterized by gel electrophoresis and UV-visible spectrophotometry of its aquocobalamin, hydroxocobalamin, and cyanocobalamin complexes. The haptocorrin is a glycoprotein with a molecular mass of about 70 kDa and a protein moiety of about 40 kDa. 31P NMR resonances of the haptocorrin-cobalamin complexes are relatively broad singlets (with or without proton decoupling) shifted downfield by 0.7-1.0 ppm from the position of the free cobalamin resonances. From the line width data, the relaxation of the phosphorus nucleus is found to be dominated by chemical shift anisotropy with a very minor (13%) component from dipolar interaction with the two nearest neighbor protons. The rotational correlation time of the haptocorrin at 25 degrees C is estimated to be 85 ns and the activation energy for rotational correlation 3.9 +/- 0.3 kcal mol-1. The downfield shift of the 31P resonances of cobalamins upon binding to the haptocorrin cannot be due to hydrogen bonding phosphodiester moiety or displacement of the axial base by a group on the protein. Calculations also show that the downfield shift is very unlikely to be due to dipolar deshielding of the phosphorus nucleus by the ring current of an aromatic residue of the protein. It is concluded that the downfield shift of the 31P resonance must be due to sterically induced changes in phosphodiester conformation which may, or may not, involve steric compression of the axial Co-N bond.  相似文献   

16.
The conformation of a melittin—inhibitor complex was studied by solution NMR, solid-state NMR, and circular dichroism. In solution, binding was studied by titrating inhibitor against melittin in dimethyl sulfoxide, methanol, aqueous buffer, and dodecylphosphocholine micelles. The change in chemical shift of Trp19 resonances and the formation of a precipitate at 1:1 molar ratio indicated that the inhibitor was bound to melittin. Solid-state NMR also showed a change in chemical shift of two labeled carbons of melittin near Pro14 and a change in 1H T 1 relaxation times when complexed with inhibitor. Rotational resonance experiments of melittin labeled in the proline region indicated a change in conformation for melittin complexed with inhibitor. This observation was also supported by circular dichroism measurements, indicating a reduction in α-helical structure for increasing ratios of inhibitor bound to melittin.  相似文献   

17.
The inactivation of chymotrypsin by 5-benzyl-6-chloro-2-pyrone has been studied. Chloride analysis of the inactivated enzyme suggests that chlorine is no longer present in the complex. 13C NMR spectroscopy of chymotrypsin inactivated with 5-benzyl-6-chloro-2-pyrone-2,6-13 C2 shows the presence of two new resonances from the protein-bound inactivator. The chemical shift values of these resonances are consistent with an intact pyrone ring on the enzyme as well as the replacement of the C-6 chlorine by a different heteroatom. X-ray diffraction analysis at 1.5-A resolution of the inactivator-enzyme complex demonstrates that the gamma-oxygen of the active site serine residue (serine 195) is covalently attached to C-6 of the inactivator and that the pyrone ring is intact. The 5-benzyl group of the inactivator is bound to the enzyme in the hydrophobic specificity pocket. The conformational changes that occur in the protein as a result of complexation with the inactivator are discussed.  相似文献   

18.
Susceptibility to multiple sclerosis (MS) is associated with certain MHC class II haplotypes, in particular HLA-DR2. Two DR beta chains, DRB1*1501 and DRB5*0101, are co-expressed in the HLA-DR2 haplotype, resulting in the formation of two functional cell surface heterodimers, HLA-DR2a (DRA*0101, DRB5*0101) and HLA-DR2b (DRA*0101, DRB1*1501). Both isotypes can present an immunodominant peptide of myelin basic protein (MBP 84-102) to MBP-specific T cells from MS patients. We have determined the crystal structure of HLA-DR2a complexed with MBP 86-105 to 1.9 A resolution. A comparison of this structure with that of HLA-DR2b complexed with MBP 85-99, reported previously, reveals that the peptide register is shifted by three residues, such that the MBP peptide is bound in strikingly different conformations by the two MHC molecules. This shift in binding register is attributable to a large P1 pocket in DR2a, which accommodates Phe92, in conjunction with a relatively shallow P4 pocket, which is occupied by Ile95. In DR2b, by contrast, the small P1 pocket accommodates Val89, while the deep P4 pocket is filled by Phe92. In both complexes, however, the C-terminal half of the peptide is positioned higher in the binding groove than in other MHC class II/peptide structures. As a result of the register shift, different side-chains of the MBP peptide are displayed for interaction with T cell receptors in the DR2a and DR2b complexes. These results demonstrate that MHC molecules can impose different alignments and conformations on the same bound peptide as a consequence of topological differences in their peptide-binding sites, thereby creating distinct T cell epitopes.  相似文献   

19.
Escherichia coli 5S RNA labeled with 15N at N3 of the uridines was isolated from the S phi-187 uracil auxotroph grown on a minimal medium supplemented with [3-15N]uracil. 1H-15N multiple quantum filtered and 2D chemical shift correlated spectra gave resonances for the uridine imino 1H-15N units whose protons were exchanging slowly with solvent. Peaks with 1H/15N shifts at 11.6/154.8, 11.7/155.0, 11.8/155.5, 12.1/155.0, and 12.2/155.0 ppm were assigned to GU interactions. Two labile high-field AU resonances at 12.6/156.8 and 12.8/157.3 ppm typical of AU pairs in a shielded environment at the end of a helix were seen. Intense AU signals were also found at 13.4/158.5 and 13.6/159.2 ppm where 1H-15N units in normal Watson-Crick pairs resonate. 1H resonances at 10.6 and 13.8 ppm were too weak, presumably because of exchange with water, to give peaks in chemical shift correlated spectra. 1H chemical shifts suggest that the resonance at 13.8 ppm represents a labile AU pair, while the resonance at 10.6 ppm is typical of a tertiary interaction between U and a tightly bound water or a phosphate residue. The NMR data are consistent with proposed secondary structures for 5S RNA.  相似文献   

20.
P R?sch  W Klaus  M Auer  R S Goody 《Biochemistry》1989,28(10):4318-4325
Proton and fluorine nuclear magnetic resonance spectroscopies (NMR) were used as methods to investigate binary complexes between porcine adenylate kinase (AK1) and its substrates. We also studied the interaction of fluorinated substrate analogues and the supposed bisubstrate analogue P1,P5-bis(5'-adenosyl) pentaphosphate (AP5A) with AK1 in the presence of Mg2+. The chemical shifts of the C8-H, C2-H, and ribose C1'-H resonances of both adenosine units in stoichiometric complexes of AK1 with AP5A in the presence of Mg2+ could be determined. The C2-H resonance of one of the adenine bases experiences a downfield shift of about 0.8 ppm on binding to the enzyme. The chemical shift of the His36 imidazole C2-H was changed in the downfield direction on ATP-Mg2+ and, to a lesser extent, AMP binding. 19F NMR chemical shifts of 9-(3-fluoro-3-deoxy-beta-D-xylofuranosyl)adenine triphosphate (3'-F-X-ATP)-Mg2+ and 9-(3-fluoro-3-deoxy-beta-D-xylofuranosyl)adenine monophosphate (3'-F-X-AMP) bound to porcine adenylate kinase could be determined. The different chemical shifts of the bound nucleotides suggest that their mode of binding is different. Free and bound 3'-F-X-AMP are in fast exchange with respect to their 19F chemical shifts, whereas free and bound 3'-F-X-ATP are in slow exchange on the NMR time scale in the absence as well as in the presence of Mg2+. This information could be used to determine the apparent dissociation constants of the nucleotides and the 3'-F-X analogues in the binary complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号