共查询到20条相似文献,搜索用时 15 毫秒
1.
Nily Dan 《生物化学与生物物理学报:生物膜》2007,1768(10):2393-2399
Many lipids are composed of asymmetric tail chains that differ by their molecular weight (MW) and/or degree of saturation. Previous studies found that membrane moduli vary with the degree of lipid tail asymmetry. However, to date little is known regarding the effect (if any) of tail asymmetry on the membrane-induced interactions between embedded proteins. In this paper we use a self-consistent field model to examine the effect of lipid tail asymmetry on membrane proteins. We first examine the case where the overall tail length (sum of both chains) is held constant, which implies that the membrane thickness remains constant as well, independent of tail asymmetry. We find that, in these systems, the membrane area stretch and bending moduli decrease with increasing chain asymmetry, thereby reducing the magnitude of the membrane-induced barrier to protein aggregation. Since in symmetric lipid bilayers the energy barrier is typically of order ∼ 1-2 times the thermal energy kT, the asymmetry-induced reduction in barrier height may increase the probability of protein aggregation significantly. In systems where one tail chain is held constant, increasing asymmetry involves changes in the bilayer thickness which are found to dominate any effect arising from the asymmetry. 相似文献
2.
After incubation of human erythrocytes at 37 °C in the absence of glucose (A) for 24 h, (B) for 4 h with 8 mM hexanol or (C) for 3 h with SH reagents, phosphatidylethanolamine becomes partly susceptible to hydrolysis by phospholipase A2 from Naja naja. The presence of glucose during the pretreatments suppresses this effect, except in the case of SH reagents that inhibit glycolysis. After incubation with tetrathionate, up to 45% of the phosphatidylethanolamine is degraded by the enzyme, an amount considerably in excess of the 20% attacked in fresh erythrocytes.Pancreatic phospholipase A2, an enzyme unable to hydrolyse the phospholipids of intact erythrocytes, partially degrades phosphatidylcholine and phosphatidylethanolamine of erythrocytes pretreated with hexanol or SH reagents. Reagents capable of oxidizing SH groups to disulfides (tetrathionate, and hydroquinone) even render susceptible to pancreatic phospholipase A2 phosphatidylserine, a phospholipid supposed to be entirely located in the inner lipid layer of the membrane. Alkylating or acylating SH reagents have no such effect. It is postulated that disulfide bond formation between membrane protein SH groups leads to an alteration in protein-phospholipid interactions and consequently induces a reorientation of phospholipids between the inner and the outer membrane lipid layer. 相似文献
3.
Membrane proteins can deform the lipid bilayer in which they are embedded. If the bilayer is treated as an elastic medium, then these deformations will generate elastic interactions between the proteins. The interaction between a single pair is repulsive. However, for three or more proteins, we show that there are nonpairwise forces whose magnitude is similar to the pairwise forces. When there are five or more proteins, we show that the nonpairwise forces permit the existence of stable protein aggregates, despite their pairwise repulsions. 相似文献
4.
After incubation of human erythrocytes at 37 degrees C in the absence of glucose (A) for 24 h, (B) for 4 h with 8 mM hexanol or (C) for 3 h with SH reagents, phosphatidylethanolamine becomes partly susceptible to hydrolysis by phospholipase A2 from Naja naja. The presence of glucose during the pretreatments suppresses this effect, except in the case of SH reagents that inhibit glycolysis. After incubation with tetrathionate, up to 45% of the phosphatidylethanolamine is degraded by the enzyme, an amount considerably in excess of the 20% attacked in fresh erythrocytes. Pancreatic phospholipase A2, an enzyme unable to hydrolyse the phospholipids of intact erythrocytes, partially degrades phosphatidylcholine and phosphatidylethanolamine of erythrocytes pretreated with hexanol or SH reagents. Reagents capable of oxidizing SH groups to disulfides (tetrathionate, o-iodosobenzoate and hydroquinone) even render susceptible to pancreatic phospholipase A2 phosphatidylserine, a phospholipid supposed to be entirely located in the inner lipid layer of the membrane. Alkylating or acylating SH reagents have no such effect. It is postulated that disulfide bond formation between membrane protein SH groups leads to an alteration in protein-phospholipid interactions and consequently induces a reorientation of phospholipids between the inner and the outer membrane lipid layer. 相似文献
5.
Smooth lipopolysaccharides fromEscherichia coli, Brucella, andPseudomonas solanacearum were studied for their ability to interact with porin proteins ofE. coli andB. ovis. Despite the differences in chemical composition and taxonomic origin, lipopolysaccharides and heterologous porins associated in vitro to form spherical bodies on whose surface antigenic determinants of the porins were exposed. No differences were observed between these materials and those obtained by homologous reassociations. The results demonstrated that no species-specific requirements exist for lipopolysaccharides-porin association and stress the physicochemical similarity in the outer membranes of bacteria without taxonomic relationship. 相似文献
6.
Auerbach D Galeuchet-Schenk B Hottiger MO Stagljar I 《Journal of receptor and signal transduction research》2002,22(1-4):471-481
The recent sequencing of entire eukaryotic genomes has renewed the interest in identifying and characterizing all gene products that are expressed in a given organism. The characterization of unknown gene products is facilitated by the knowledge of its binding partners. Thus, a novel protein may be classified by identifying previously characterized proteins that interact with it. If such an approach is carried out on a large scale, it may allow the rapid characterization of the thousands of predicted open reading frames identified by recent sequencing projects. Currently, the yeast two-hybrid system is the most widely used genetic assay for the detection of protein-protein interactions. The yeast two-hybrid system has become popular because it requires little individual optimization and because, as compared to conventional biochemical methods, the identification and characterization of protein-protein interactions can be completed in a relatively short time span. In this review, we briefly discuss the yeast two-hybrid system and its application to large scale screening studies that aim at deciphering all protein-protein interactions taking place in a given cell type or organism. We then focus on a class of proteins that is unsuitable for conventional yeast two-hybrid systems, namely integral membrane proteins and membrane-associated proteins, and describe several novel genetic systems that combine the advantages of the yeast two-hybrid system with the potential to identify interaction partners of membrane-associated proteins in their natural setting. 相似文献
7.
ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro
下载免费PDF全文

Proper placement of the division apparatus in Escherichia coli requires pole-to-pole oscillation of the MinC division inhibitor. MinC dynamics involves a membrane association-dissociation cycle that is driven by the activities of the MinD ATPase and the MinE topological specificity factor, which themselves undergo coupled oscillatory localization cycles. To understand the biochemical mechanisms underlying Min protein dynamics, we studied the interactions of purified Min proteins with phospholipid vesicles and the role of ATP in these interactions. We show that (i) the ATP-bound form of MinD (MinD.ATP) readily associates with phospholipid vesicles in the presence of Mg(2+), whereas the ADP-bound form (MinD.ADP) does not; (ii) MinD.ATP binds membrane in a self-enhancing fashion; (iii) both MinC and MinE can be recruited to MinD.ATP-decorated vesicles; (iv) MinE stimulates dissociation of MinD.ATP from the membrane in a process requiring hydrolysis of the nucleotide; and (v) MinE stimulates dissociation of MinC from MinD.ATP-membrane complexes, even when ATP hydrolysis is blocked. The results support and extend recent work by Z. Hu et al. (Z. Hu, E. P. Gogol, and J. Lutkenhaus, Proc. Natl. Acad. Sci. USA 99:6761-6766, 2002) and support models of protein oscillation wherein MinE induces Min protein dynamics by stimulating the conversion of the membrane-bound form of MinD (MinD.ATP) to the cytoplasmic form (MinD.ADP). The results also indicate that MinE-stimulated dissociation of MinC from the MinC-MinD.ATP-membrane complex can, and may, occur prior to hydrolysis of the nucleotide. 相似文献
8.
Stanley AM Treubrodt AM Chuawong P Hendrickson TL Fleming KG 《Journal of molecular biology》2007,366(2):461-468
Outer membrane phospholipase A (OMPLA) is a unique, integral membrane enzyme found in Gram-negative bacteria and is an important virulence factor for pathogens such as Helicobacter pylori. This broad-specificity lipase degrades a variety of lipid substrates, and it plays a direct role in adjusting the composition and permeability of bacterial membranes under conditions of stress. Interestingly, OMPLA shows little preference for the lipid headgroup and, instead, the length of the hydrophobic acyl chain is the strongest determinant for substrate selection by OMPLA, with the enzyme strongly preferring substrates with chains equal to or longer than 14 carbon atoms. The question remains as to how a hydrophobic protein like OMPLA can achieve this specificity, particularly when the shorter chains can be accommodated in the binding pocket. Using a series of sulfonyl fluoride inhibitors with various lengths of acyl chain, we show here that the thermodynamics of substrate-induced OMPLA dimerization are guided by the acyl chain length, demonstrating that OMPLA uses a unique biophysical mechanism to select its phospholipid substrate. 相似文献
9.
We mimicked the effect of sphingomyelinase activity on lipid mixtures of palmitoyl-oleoyl-phosphatidylcholine, sphingomyelin, ceramide, and 10 mol % cholesterol. Using x-ray diffraction experiments in combination with osmotic stress we found, in agreement with previous studies, that ceramide induces a coexistence of L(α) and L(β) domains. A detailed structural analysis of the coexisting domains demonstrated an increase of lipid packing density and membrane thickness in the L(α) domains upon increasing overall ceramide levels. This provides evidence for a ceramide-driven accumulation of cholesterol in the L(α) domains, in support of previous reports. We further determined the bending rigidities of the coexisting domains and found that the accumulation of cholesterol in the L(α) domains stabilizes their bending rigidity, which experiences a dramatic drop in the absence of cholesterol. Deriving experimental estimates for the spontaneous curvature and Gaussian modulus of curvature, we show, using a simple geometric model for ion channels, that in this way changes in the conformational equilibrium of membrane proteins can be kept small. 相似文献
10.
In vitro interactions between the two mitochondrial membrane proteins VDAC and cytochrome c oxidase 总被引:1,自引:0,他引:1
VDAC, a mitochondrial outer membrane channel, is involved in the control of aerobic metabolism and in apoptotic processes via numerous protein-protein interactions. To unveil those interactions, we screened a human liver cDNA library with the phage display methodology optimized to target VDAC reconstituted into a membrane environment. One positively selected clone yielded a sequence matching a part of the subunit I of human cytochrome c oxidase (COX), a mitochondrial inner membrane enzyme. Such putative interaction was never reported before. This interaction proved to be functional as evidenced by the effect of the human and yeast isoforms of VDAC on the oxidation of cytochrome c by the pure holoenzyme and by the effect of the COX epitope on VDAC permeability. Our results providing four independently obtained evidences of VDAC-COX interaction in vitro, would support a novel and potentially important level of mitochondrial regulation given the respective locations and functions of both proteins. 相似文献
11.
12.
The importance of electrostatic interactions between buried charges in determining the properties of membrane proteins is considered. It is demonstrated that in some cases altered properties may result from the extraction of a membrane protein into an aqueous medium even when the protein conformation is unperturbed. 相似文献
13.
Membrane fluidity plays an important role in cell function and may, in many instances, be adjusted to facilitate specific cellular processes. To understand better the effect that lipid chemistry has on membrane fluidity the inclusion of three different lipids into egg phosphatidylcholine (eggPC) bilayers has been examined; the three lipids are egg phosphatidylethanolamine ((eggPE) made by transphosphatidylation of eggPC in the presence of ethanolamine), lyso-phosphatidylcholine (LPC), and lyso-phosphatidylethanolamine (LPE). The fluidity of the membranes was determined using fluorescence recovery after photobleaching and the intermolecular interactions were examined using attenuated total reflection Fourier transform infrared spectroscopy. It was observed that both headgroup and tail chemistry can significantly modulate lipid diffusion. Specifically, the inclusion of LPC and eggPE significantly altered the lipid diffusion, increased and decreased, respectively, whereas the inclusion of LPE had an intermediate effect, a slight decrease in diffusion. Strong evidence for the formation of hydrogen-bonds between the phosphate group and the amine group in eggPE and LPE was observed with infrared spectroscopy. The biological implications of these results are discussed. 相似文献
14.
Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation
下载免费PDF全文

The intracellular enveloped form of vaccinia virus (IEV) induces the formation of actin tails that are strikingly similar to those seen in Listeria and Shigella infections. In contrast to the case for Listeria and Shigella, the vaccinia virus protein(s) responsible for directly initiating actin tail formation remains obscure. However, previous studies with recombinant vaccinia virus strains have suggested that the IEV-specific proteins A33R, A34R, A36R, B5R, and F13L play an undefined role in actin tail formation. In this study we have sought to understand how these proteins, all of which are predicted to have small cytoplasmic domains, are involved in IEV assembly and actin tail formation. Our data reveal that while deletion of A34R, B5R, or F13L resulted in a severe reduction in IEV particle assembly, IEVs formed by the DeltaB5R and DeltaF13L deletion strains, but not DeltaA34R, were still able to induce actin tails. The DeltaA36R deletion strain produced normal amounts of IEV particles, although these were unable to induce actin tails. Using several different approaches, we demonstrated that A36R is a type Ib membrane protein with a large, 195-amino-acid cytoplasmic domain exposed on the surface of IEV particles. Finally, coimmunoprecipitation experiments demonstrated that A36R interacts with A33R and A34R but not with B5R and that B5R forms a complex with A34R but not with A33R or A36R. Using extracts from DeltaA34R- and DeltaA36R-infected cells, we found that the interaction of A36R with A33R and that of A34R with B5R are independent of A34R and A36R, respectively. We conclude from our observations that multiple interactions between IEV membrane proteins exist which have important implications for IEV assembly and actin tail formation. Furthermore, these data suggest that while A34R is involved in IEV assembly and organization, A36R is critical for actin tail formation. 相似文献
15.
Non-covalent interactions between proteins and polysaccharides 总被引:2,自引:0,他引:2
McClements DJ 《Biotechnology advances》2006,24(6):621-625
Foods with novel or improved properties can be created by utilizing non-covalent interactions between proteins and polysaccharides. In solution, either attractive or repulsive interactions between proteins and polysaccharides can be used to create microstructures that give foods novel textural and sensory properties. At interfaces, attractive electrostatic interactions can be used to create food emulsions with improved stability to environmental stresses or with novel encapsulation-release characteristics. 相似文献
16.
Higher-order interactions are important for protein folding and assembly. We introduce the concept of interhelical three-body interactions as derived from Delaunay triangulation and alpha shapes of protein structures. In addition to glycophorin A, where triplets are strongly correlated with protein stability, we found that tight interhelical triplet interactions exist extensively in other membrane proteins, where many types of triplets occur far more frequently than in soluble proteins. We developed a probabilistic model for estimating the value of membrane helical interaction triplet (MHIT) propensity. Because the number of known structures of membrane proteins is limited, we developed a bootstrap method for determining the 95% confidence intervals of estimated MHIT values. We identified triplets that have high propensity for interhelical interactions and are unique to membrane proteins, e.g. AGF, AGG, GLL, GFF and others. A significant fraction (32%) of triplet types contains triplets that may be involved in interhelical hydrogen bond interactions, suggesting the prevalent and important roles of H-bond in the assembly of TM helices. There are several well-defined spatial conformations for triplet interactions on helices with similar parallel or antiparallel orientations and with similar right-handed or left-handed crossing angles. Often, they contain small residues and correspond to the regions of the closest contact between helices. Sequence motifs such as GG4 and AG4 can be part of the three-body interactions that have similar conformations, which in turn can be part of a higher-order cooperative four residue spatial motif observed in helical pairs from different proteins. In many cases, spatial motifs such as serine zipper and polar clamp are part of triplet interactions. On the basis of the analysis of the archaeal rhodopsin family of proteins, tightly packed triplet interactions can be achieved with several different choices of amino acid residues. 相似文献
17.
N H Heegaard 《Biochimica et biophysica acta》1990,1023(2):239-246
Autologous immunoglobulin G present during electrophoresis of human erythrocyte membrane proteins influenced the electrophoretic mobility of some of the proteins. Different types of non-ionic detergents were used for solubilization of the membranes and together with experiments using dimyristoylphosphatidylcholine-derived erythrocyte membrane vesicles this indicated that IgG binds to spectrin, ankyrin, and band 3 protein. The binding was independent on proteolysis and not due to unspecific protein-protein interactions. Immunoblotting experiments also showed binding to polypeptide bands in the spectrin and ankyrin regions and demonstrated the presence of erythrocyte-associated IgG. The reactivity may be due to natural autoantibodies involved in the clearance of cellular debris in vivo. Whether the observations are of relevance for the putative immune-mediated clearance of old erythrocytes from the circulation remains to be established. 相似文献
18.
Biological membranes are two dimensional, making the discovery of quasi-one-dimensional diffusion of membrane proteins puzzling. Jaqaman et al. (2011) now show that actomyosin and tubulin interact to establish long, thin diffusion corridors, thereby increasing the effective concentration of select membrane proteins to promote their interactions and modulate signaling. 相似文献
19.
Cation–π interactions are known to be important contributors to protein stability and ligand–protein interactions. In this study, we have analyzed the influence of cation–π interactions in single chain ‘all-alpha’ proteins. We observed 135 cation–π interactions in a data set of 75 proteins. No significant correlation was observed between the total number of amino acid residues and number of cation–π interactions. These interactions are mainly formed by long-range contacts and there is preference of Arg over Lys in these interactions. Arg–Phe interactions are predominant among the various pairs analyzed. Despite the scarcity of interactions involving Trp, the average energy for Trp–cation interactions, was quite high. This information implies that the cation–π interactions involving Trp, maybe of high relevance to the proteins. Secondary structure analysis reveals that cation–π interactions are formed preferrably between residues, in which at least one of them, is in the secondary structure of alpha-helical segments. Among the various types of folds of ‘all-alpha’ proteins considered for the analysis, proteins belonging to alpha–alpha superhelix fold have the highest number of cation–π interaction forming residues. 相似文献
20.
S Narindrasorasak D Lowery P Gonzalez-DeWhitt R A Poorman B Greenberg R Kisilevsky 《The Journal of biological chemistry》1991,266(20):12878-12883
High affinity interactions were studied between the basement membrane form of heparan sulfate proteoglycan (HSPG) and the 695-, 751-, and 770-amino acid Alzheimer amyloid precursor (AAP) proteins. Based on quantitative analyses of binding data, we identified single binding sites for the HSPG on AAP-695 (Kd = 9 x 10(-10) M), AAP-751 (Kd = 10 x 10(-9) M), and AAP-770 (Kd = 9 x 10(-9) M). It is postulated that the "Kunitz" protease inhibitor domain which is present in AAP-751 and -770 reduces the affinity of AAPs for the HSPG through steric hindrance and/or conformational alteration. HSPG binding was inhibited by heparin and dextran sulfate, but not by dermatan or chondroitin sulfate. HSPG protein core, obtained by heparitinase digestion, also bound to the beta-amyloid precursor proteins with high affinity, indicating that the high affinity binding site is constituted by the polypeptide chain rather than the carbohydrate moiety. The effects of various cations on these interactions were also studied. Our results suggest that specific interactions between the AAP proteins and the extracellular matrix may be involved in the nucleation stages of Alzheimer's disease type amyloidogenesis. 相似文献