首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Initiation of protein synthesis on picornavirus RNA requires an internal ribosome entry site (IRES). Typically, picornavirus IRES elements contain about 450 nucleotides (nt) and use most of the cellular translation initiation factors. However, it is now shown that just 280 nt of the porcine teschovirus type 1 Talfan (PTV-1) 5' untranslated region direct the efficient internal initiation of translation in vitro and within cells. In toeprinting assays, assembly of 48S preinitiation complexes from purified components on the PTV-1 IRES was achieved with just 40S ribosomal subunits plus eIF2 and Met-tRNA(i)(Met). Indeed, a binary complex between 40S subunits and the PTV-1 IRES is formed. Thus, the PTV-1 IRES has properties that are entirely different from other picornavirus IRES elements but highly reminiscent of the hepatitis C virus (HCV) IRES. Comparison between the PTV-1 IRES and HCV IRES elements revealed islands of high sequence identity that occur in regions critical for the interactions of the HCV IRES with the 40S ribosomal subunit and eIF3. Thus, there is significant functional and structural similarity between the IRES elements from the picornavirus PTV-1 and HCV, a flavivirus.  相似文献   

2.
Double subgenomic Sindbis virus (dsSINV) vectors are widely used for the expression of proteins, peptides, and RNA sequences. These recombinant RNA viruses permit high level expression of a heterologous sequence in a wide range of animals, tissues, and cells. However, the alphavirus genome structure and replication strategy is not readily amenable to the expression of more than one heterologous sequence. The Rhopalosiphum padi virus (RhPV) genome contains two internal ribosome entry site (IRES) elements that mediate cap-independent translation of the virus nonstructural and structural proteins. Most IRES elements that have been characterized function only in mammalian cells but previous work has shown that the IRES element present in the 5' untranslated region (UTR) of the RhPV genome functions efficiently in mammalian, insect, and plant systems. To determine if the 5' RhPV IRES element could be used to express more than one heterologous sequence from a dsSINV vector, RhPV 5' IRES sequences were placed between genes for two different fluorescent marker proteins in the dsSINV, TE/3'2J/mcs. While mammalian and insect cells infected with recombinant viruses containing the RhPV sequences expressed both fluorescent marker proteins, only single marker proteins were routinely observed in cells infected with dsSINV vectors in which the RhPV IRES had been replaced by a luciferase fragment, an antisense RhPV IRES, or no intergenic sequence. Thus, we report development of a versatile tool for the expression of multiple sequences in diverse cell types.  相似文献   

3.
The hepatitis C viral mRNA initiates translation using an internal ribosome entry site (IRES) located in the 5' noncoding region of the viral genome. At physiological magnesium ion concentrations, the HCV IRES forms a binary complex with the 40S ribosomal subunit, recruits initiation factor eIF3 and the ternary eIF2/GTP/Met-tRNA(i)Met complex, and joins 60S subunits to assemble translation-competent 80S ribosomes. Here we show that in the presence of 5 mM MgCl2, the HCV IRES can initiate translation by an alternative mechanism that does not require known initiation factors. Specifically, the HCV IRES was shown to initiate translation in a reconstituted system consisting only of purified 40S and 60S subunits, elongation factors, and aminoacylated tRNAs at high magnesium concentration. Analyses of assembled complexes supported a mechanism by which preformed 80S ribosomes can assemble directly on the HCV IRES at high cation concentrations. This mechanism is reminiscent of that employed by the divergent IRES elements in the Dicistroviridae, exemplified by the cricket paralysis virus, which mediates initiation of protein synthesis without initiator tRNA.  相似文献   

4.
Translation initiation on foot-and-mouth disease virus (FMDV) RNA occurs by a cap-independent mechanism directed by a highly structured element (approximately 435 nt) termed an internal ribosome entry site (IRES). A functional assay to identify proteins that bind to the FMDV IRES and are necessary for FMDV IRES-mediated translation initiation has been developed. In vitro-transcribed polyadenylated RNAs corresponding to the whole or part of the FMDV IRES were immobilized on oligo-dT Dynabeads and used to deplete rabbit reticulocyte lysate (RRL) of IRES-binding proteins. Translation initiation factors eIF4G, eIF4A, and eIF4B bound to the 3' domain of the FMDV IRES. Depletion of eIF4G from RRL by this region of the FMDV IRES correlated with the loss of translational capacity of the RRL for capped, uncapped, and FMDV IRES-dependent mRNAs. However, this depleted RRL still supported hepatitis C virus IRES-directed translation. Poly (rC) binding protein-2 bound to the central domain of the FMDV IRES, but depletion of RRL with this IRES domain had no effect on FMDV IRES-directed translation initiation.  相似文献   

5.
Certain viral and cellular mRNAs initiate translation cap-independently at internal ribosome entry site (IRES) elements. Picornavirus IRES elements are widely used in dicistronic or multicistronic vectors in gene therapy, virus replicon systems, and analysis of IRES function. In such vectors, expression of the upstream gene often serves as internal control to standardize the readings of IRES-driven downstream reporter activity. Picornaviral IRES elements translate optimally at up to 120 mM K(+) concentration, whereas genes used as upstream reporters usually have lower salt optima when present in monocistronic mRNAs. However, here we show that such reporter genes are efficiently translated at higher K(+) concentrations when placed upstream of a functional picornavirus IRES. This translation enhancement occurs in cis, is independent of the nature of the first reporter and of second reporter translation, and is conferred by the IRESs of picornaviruses but not of hepatitis C virus. A defective picornavirus IRES with a deletion killing IRES activity but leaving the binding site for initiation factor eIF4G intact retains translation enhancement activity. Translation enhancement on a capped mRNA is disabled by m(7)GDP. In addition, the C-terminal fragment of eIF4G can confer translation enhancement also on uncapped mRNA. We conclude that whenever eIF4F has been captured to a dicistronic mRNA by binding to a picornavirus IRES via its eIF4G moiety, it can be provided in cis to the 5'-end of the RNA and there stimulate translation initiation, either by binding to the cap nucleotide using its eIF4E moiety or by binding to the RNA cap-independently using its eIF4G moiety.  相似文献   

6.
Eukaryotic translation is initiated following binding of ribosomes either to the capped 5' end of an mRNA or to an internal ribosomal entry site (IRES) within its 5' nontranslated region. These processes are both mediated by eukaryotic initiation factor 4F (eIF4F), which consists of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G subunits. Here we present a functional analysis of eIF4F which defines the subunits and subunit domains necessary for its function in initiation mediated by the prototypical IRES element of encephalomyocarditis virus. In an initiation reaction reconstituted in vitro from purified translation components and lacking eIF4A and -4F, IRES-mediated initiation did not require the cap-binding protein eIF4E but was absolutely dependent on eIF4A and the central third of eIF4G. This central domain of eIF4G bound strongly and specifically to a structural element within the encephalomyocarditis virus IRES upstream of the initiation codon in an ATP-independent manner and with the same specificity as eIF4F. The carboxy-terminal third of eIF4G did not bind to the IRES. The central domain of eIF4G was itself UV cross-linked to the IRES and strongly stimulated UV cross-linking of eIF4A to the IRES in conjunction with either eIF4B or with the carboxy-terminal third of eIF4G.  相似文献   

7.
Initiation of translation of encephalomyocarditis virus mRNA is mediated by an internal ribosome entry site (IRES) comprising structural domains H, I, J-K, and L immediately upstream of the initiation codon AUG at nucleotide 834 (AUG834). Assembly of 48S ribosomal complexes on the IRES requires eukaryotic initiation factor 2 (eIF2), eIF3, eIF4A, and the central domain of eIF4G to which eIF4A binds. Footprinting experiments confirmed that eIF4G binds a three-way helical junction in the J-K domain and showed that it interacts extensively with RNA duplexes in the J-K and L domains. Deletion of apical hairpins in the J and K domains synergistically impaired the binding of eIF4G and IRES function. Directed hydroxyl radical probing, done by using Fe(II) tethered to surface residues in eIF4G's central domain, indicated that it is oriented with its N terminus towards the base of domain J and its C terminus towards the apex. eIF4G recruits eIF4A to a defined location on the IRES, and the eIF4G/eIF4A complex caused localized ATP-independent conformational changes in the eIF4G-binding region of the IRES. This complex also induced more extensive conformational rearrangements at the 3' border of the ribosome binding site that required ATP and active eIF4A. We propose that these conformational changes prepare the region flanking AUG834 for productive binding of the ribosome.  相似文献   

8.
Eukaryotic mRNAs possess a poly(A) tail that enhances translation via the (7)mGpppN cap structure or internal ribosome entry sequences (IRESs). Here we address the question of how cellular IRESs recruit the ribosome and how recruitment is augmented by the poly(A) tail. We show that the poly(A) tail enhances 48S complex assembly by the c-myc IRES. Remarkably, this process is independent of the poly(A) binding protein (PABP). Purification of native 48S initiation complexes assembled on c-myc IRES mRNAs and quantitative label-free analysis by liquid chromatography and mass spectrometry directly identify eIFs 2, 3, 4A, 4B, 4GI, and 5 as components of the c-myc IRES 48S initiation complex. Our results demonstrate for the first time that the poly(A) tail augments the initiation step of cellular IRES-driven translation and implicate a distinct subset of translation initiation factors in this process. The mechanistic distinctions from cap-dependent translation may allow specific translational control of the c-myc mRNA and possibly other cellular mRNAs that initiate translation via IRESs.  相似文献   

9.
Translation of picornavirus RNA is initiated after ribosomal binding to an internal ribosomal entry site (IRES) within the 5' untranslated region. We have reconstituted IRES-mediated initiation on encephalomyocarditis virus RNA from purified components and used primer extension analysis to confirm the fidelity of 48S preinitiation complex formation. Eukaryotic initiation factor 2 (eIF2), eIF3, and eIF4F were required for initiation; eIF4B and to a lesser extent the pyrimidine tract-binding protein stimulated this process. We show that eIF4F binds to the IRES in a novel cap-independent manner and suggest that cap- and IRES-dependent initiation mechanisms utilize different modes of interaction with this factor to promote ribosomal attachment to mRNA.  相似文献   

10.
Translation of the genomes of several positive-sense RNA viruses follows end-independent initiation on an internal ribosomal entry site (IRES) in the viral mRNA. There are four major IRES groups, and despite major differences in the mechanisms that they use, one unifying characteristic is that each mechanism involves essential non-canonical interactions of the IRES with components of the canonical translational apparatus. Thus the ~ 200nt.-long Type 4 IRESs (epitomized by Cricket paralysis virus) bind directly to the intersubunit space on the ribosomal 40S subunit, followed by joining to a 60S subunit to form active ribosomes by a factor-independent mechanism. The ~ 300nt.-long type 3 IRESs (epitomized by Hepatitis C virus) binds independently to eukaryotic initiation factor (eIF) 3, and to the solvent-accessible surface and E-site of the 40S subunit: addition of eIF2-GTP/initiator tRNA is sufficient to form a 48S complex that can join a 60S subunit in an eIF5/eIF5B-mediated reaction to form an active ribosome. Recent cryo-electron microscopy and biochemical analyses have revealed a second general characteristic of the mechanisms of initiation on Type 3 and Type 4 IRESs. Both classes of IRES induce similar conformational changes in the ribosome that influence entry, positioning and fixation of mRNA in the ribosomal decoding channel. HCV-like IRESs also stabilize binding of initiator tRNA in the peptidyl (P) site of the 40S subunit, whereas Type 4 IRESs induce changes in the ribosome that likely promote subsequent steps in the translation process, including subunit joining and elongation.  相似文献   

11.
12.
Rhopalosiphum padi virus (RhPV) is one of several picorna-like viruses that infect insects; sequence analysis has revealed distinct differences between these agents and mammalian picornaviruses. RhPV has a single-stranded positive-sense RNA genome of about 10 kb; unlike the genomes of Picornaviridae, however, this genome contains two long open reading frames (ORFs). ORF1 encodes the virus nonstructural proteins, while the downstream ORF, ORF2, specifies the structural proteins. Both ORFs are preceded by long untranslated regions (UTRs). The intergenic UTR is known to contain an internal ribosome entry site (IRES) which directs non-AUG-initiated translation of ORF2. We have examined the 5' UTR of RhPV for IRES activity by translating synthetic dicistronic mRNAs containing this sequence in a variety of systems. We now report that the 5' UTR contains an element which directs internal initiation of protein synthesis from an AUG codon in mammalian, plant, and Drosophila in vitro translation systems. In contrast, the encephalomyocarditis virus IRES functions only in the mammalian system. The RhPV 5' IRES element has features in common with picornavirus IRES elements, in that no coding sequence is required for IRES function, but also with cellular IRES elements, as deletion analysis indicates that this IRES element does not have sharply defined boundaries.  相似文献   

13.
The hepatitis A virus (HAV) internal ribosome entry segment (IRES) is unique among the picornavirus IRESs in that it is inactive in the presence of either the entero- and rhinovirus 2A or aphthovirus Lb proteinases. Since these proteinases both cleave eukaryotic initiation factor 4G (eIF4G) and HAV IRES activity could be rescued in vitro by addition of eIF4F to proteinase-treated extracts, it was concluded that the HAV IRES requires eIF4F containing intact eIF4G. Here, we show that the inability of the HAV IRES to function with cleaved eIF4G cannot be attributed to inefficient binding of the cleaved form of eIF4G by the HAV IRES. Indeed, the binding of both intact eIF4F and the C-terminal cleavage product of eIF4G to the HAV IRES was virtually indistinguishable from their binding to the encephalomyocarditis virus IRES, as assessed by UV cross-linking and filter retention assays. Rather, we show that HAV IRES activity requires, either directly or indirectly, components of the eIF4F complex which interact with the N-terminal fragment of eIF4G. Effectively, HAV IRES activity, but not that of the human rhinovirus IRES, was sensitive to the rotavirus nonstructural protein NSP3 [which displaces poly(A)-binding protein from the eIF4F complex], to recombinant eIF4E-binding protein (which prevents the association of the cap binding protein eIF4E with eIF4G), and to cap analogue.  相似文献   

14.
The Simian picornavirus type 9 (SPV9) 5'-untranslated region (5' UTR) has been predicted to contain an internal ribosomal entry site (IRES) with structural elements that resemble domains of hepacivirus/pestivirus (HP) IRESs. In vitro reconstitution of initiation confirmed that this 5' UTR contains an IRES and revealed that it has both functional similarities and differences compared to HP IRESs. Like HP IRESs, the SPV9 IRES bound directly to 40S subunits and eukaryotic initiation factor (eIF) 3, depended on the conserved domain IIId for ribosomal binding and consequently for function, and additionally required eIF2/initiator tRNA to yield 48S complexes that formed elongation-competent 80S ribosomes in the presence of eIF5, eIF5B, and 60S subunits. Toeprinting analysis revealed that eIF1A stabilized 48S complexes, whereas eIF1 induced conformational changes in the 40S subunit, likely corresponding to partial opening of the entry latch of the mRNA-binding channel, that were exacerbated by eIF3 and suppressed by eIF1A. The SPV9 IRES differed from HP IRESs in that its function was enhanced by eIF4A/eIF4F when the IRES was adjacent to the wild-type coding sequence, but was less affected by these factors or by a dominant negative eIF4A mutant when potentially less structured coding sequences were present. Exceptionally, this IRES promoted binding of initiator tRNA to the initiation codon in the P site of 40S subunits independently of eIF2. Although these 40S/IRES/tRNA complexes could not form active 80S ribosomes, this constitutes a second difference between the SPV9 and HP IRESs. eIF1 destabilized the eIF2-independent ribosomal binding of initiator tRNA.  相似文献   

15.
Recent studies have shown that during apoptosis protein synthesis is inhibited and that this is in part due to the proteolytic cleavage of eukaryotic initiation factor 4G (eIF4G). Initiation of translation can occur either by a cap-dependent mechanism or by internal ribosome entry. The latter mechanism is dependent on a complex structural element located in the 5' untranslated region of the mRNA which is termed an internal ribosome entry segment (IRES). In general, IRES-mediated translation does not require eIF4E or full-length eIF4G. In order to investigate whether cap-dependent and cap-independent translation are reduced during apoptosis, we examined the expression of c-Myc during this process, since we have shown previously that the 5' untranslated region of the c-myc proto-oncogene contains an IRES. c-Myc expression was determined in HeLa cells during apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand. We have demonstrated that the c-Myc protein is still expressed when more than 90% of the cells are apoptotic. The presence of the protein in apoptotic cells does not result from either an increase in protein stability or an increase in expression of c-myc mRNA. Furthermore, we show that during apoptosis initiation of c-myc translation occurs by internal ribosome entry. We have investigated the signaling pathways that are involved in this response, and cotransfection with plasmids which harbor either wild-type or constitutively active MKK6, a specific immediate upstream activator of p38 mitogen-activated protein kinase (MAPK), increases IRES-mediated translation. In addition, the c-myc IRES is inhibited by SB203580, a specific inhibitor of p38 MAPK. Our data, therefore, strongly suggest that the initiation of translation via the c-myc IRES during apoptosis is mediated by the p38 MAPK pathway.  相似文献   

16.
Poliovirus translation is initiated at the internal ribosome entry site (IRES). Most likely involving the action of standard initiation factors, this highly structured cis element in the 5" noncoding region of the viral RNA guides the ribosome to an internal silent AUG. The actual start codon for viral protein synthesis further downstream is then reached by ribosomal scanning. In this study we show that two of the secondary structure elements of the poliovirus IRES, domain V and, to a minor extent, domain VI, are the determinants for binding of the eukaryotic initiation factor eIF4B. Several mutations in domain V which are known to greatly affect poliovirus growth also seriously impair the binding of eIF4B. The interaction of eIF4B with the IRES is not dependent on the presence of the polypyrimidine tract-binding protein, which also binds to the poliovirus IRES. In contrast to its weak interaction with cellular mRNAs, eIF4B remains tightly associated with the poliovirus IRES during the formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. These results indicate that the interaction of eIF4B with the 3" region of the poliovirus IRES may be directly involved in translation initiation.  相似文献   

17.
Kaku Y  Chard LS  Inoue T  Belsham GJ 《Journal of virology》2002,76(22):11721-11728
The teschoviruses constitute a recently defined picornavirus genus. Most of the genome sequence of the porcine teschovirus-1 (PTV) Talfan and several other strains is known. We now demonstrate that initiation of protein synthesis occurs at nucleotide (nt) 412 on the PTV Talfan RNA and that nt 1 to 405 contains an internal ribosome entry site (IRES) that functions efficiently in vitro and within mammalian cells. In comparison with other picornavirus IRES elements, the PTV IRES is relatively short and lacks a significant polypyrimidine tract near the 3' end. Expression of an enterovirus 2A protease, which induces cleavage of eIF4G within the translation initiation complex eIF4F, has little effect on the PTV IRES activity within BHK cells. The PTV IRES has a unique set of properties and represents a new class of picornavirus IRES element.  相似文献   

18.
Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) located in the 5' untranslated region of the genomic RNA that drives cap-independent initiation of translation of the viral message. The approximate secondary structure and minimum functional length of the HCV IRES are known, and extensive mutagenesis has established that nearly all secondary structural domains are critical for activity. However, the presence of an IRES RNA tertiary fold and its functional relevance have not been established. Using chemical and enzymatic probes of the HCV IRES RNA in solution, we show that the IRES adopts a unique three-dimensional structure at physiological salt concentrations in the absence of additional cofactors or the translation apparatus. Folding of the IRES involves cooperative uptake of magnesium and is driven primarily by charge neutralization. This tertiary structure contains at least two independently folded regions which closely correspond to putative binding sites for the 40 S ribosomal subunit and initiation factor 3 (eIF3). Point mutations that inhibit IRES folding also inhibit its function, suggesting that the IRES tertiary structure is essential for translation initiation activity. Chemical and enzymatic probing data and small-angle X-ray scattering (SAXS) experiments in solution show that upon folding, the IRES forms an extended structure in which functionally important loops are exposed. These results suggest that the 40 S ribosomal subunit and eIF3 bind an HCV IRES that is prefolded to spatially organize recognition domains.  相似文献   

19.
M Niepmann  A Petersen  K Meyer    E Beck 《Journal of virology》1997,71(11):8330-8339
The synthesis of picornavirus polyproteins is initiated cap independently far downstream from the 5' end of the viral RNA at the internal ribosome entry site (IRES). The cellular polypyrimidine tract-binding protein (PTB) binds to the IRES of foot-and-mouth disease virus (FMDV). In this study, we demonstrate that PTB is a component of 48S and 80S ribosomal initiation complexes formed with FMDV IRES RNA. The incorporation of PTB into these initiation complexes is dependent on the entry of the IRES RNA, since PTB and IRES RNA can be enriched in parallel either in 48S or 80S ribosomal complexes by stage-specific inhibitors of translation initiation. The formation of the ribosomal initiation complexes with the IRES occurs slowly, is temperature dependent, and correlates with the incorporation of PTB into these complexes. In a first step, PTB binds to the IRES, and then the small ribosomal subunit encounters this PTB-IRES complex. Mutations in the major PTB-binding site interfere simultaneously with the formation of initiation complexes, translation efficiency, and PTB cross-linking. PTB stimulates translation directed by the FMDV IRES in a rabbit reticulocyte lysate depleted of internal PTB, and the efficiency of translation can be restored to the original level by the addition of PTB. These results indicate that PTB plays an important role in the formation of initiation complexes with FMDV IRES RNA and in stimulation of internal translation initiation with this picornavirus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号