首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term and direct measurements of CO2 and water vapour exchange are needed over forested ecosystems to determine their net annual fluxes of carbon dioxide and water. Such measurements are also needed to parameterize and test biogeochemical, ecological and hydrological assessment models. Responding to this need, eddy covariance measurements of CO2 and water vapour were made ever a deciduous forest growing near Oak Ridge, TN, between April 1993 and April 1994. Periodic measurements were made of leaf area index, stomatal resistance, soil moisture and pre-dawn leaf water potential to characterize the gas exchange capacity of the canopy. Four factors had a disproportionate influence on the seasonal variation of CO2 flux densities. These factors were photon flux densities (during the growing season), temperature (during the dormant season), leaf area index and the occurrence of drought The drought period occurred during the peak of the growing season and caused a significant decline in daily and hourly CO2 flux densities, relative to observations over the stand when soil moisture was plentiful. The annual net uptake of carbon was calculated by integrating flux measurements and filling missing and spurious data with the relations obtained between measured CO2 fluxes and environmental forcing variables. The net flux of carbon for the period between April 1993 and April 1994 was -525 g C m?2 y?1. This value represents a net flux of carbon from the atmosphere and into the forest. The net annual carbon exchange of this southern temperate broadleaved forest exceeded values measured over a northern temperate forest (which experiences a shorter growing season and has less leaf area) by 200 g C m?2 y?1 (cf. Wofsy et al 1993). The seasonal variation of canopy evaporation (latent heat flux) was controlled mostly by changes in leaf area and net radiation. A strong depression in evaporation rates was not observed during the drought Over a broadleaved forest large vapour pressure deficits promote evaporation and trees in a mixed stand are able to tap a variety of deep and shallow water sources.  相似文献   

2.
Eddy covariance measurements of net ecosystem exchange (NEE) of carbon dioxide and sensible and latent heat have operated since clear felling of a 50‐year old maritime pine stand in Les Landes, in Southwestern France. Turbulent fluxes from the closed‐path system are computed via different methodologies, including those recommended from EUROFLUX (Adv. Ecol. Res. 30 (2000) 113; Agric. Forest Meteorol. 107 (2001a, b) 43 and 71), and sensitivity analysis demonstrates the merit of post‐processing for accurate flux calculation. Footprint modeling, energy balance closure, and empirical modeling corroborate the eddy flux measurements, indicating best reliability in the daytime. The ecosystem, a net source of atmospheric CO2, is capable of fixing carbon during fair weather during any season due to the abundance of re‐growing species (mostly grass), formerly from the understorey. Annual carbon loss of 200–340 g m?2 depends on the period chosen, with inter‐annual variability evident during the 18‐month measurement period and apparently related to available light. Empirical models, with weekly photosynthetic parameters corresponding to seasonal vegetation and respiration depending on soil temperature, fit the data well and allow partitioning of annual NEE into GPP and TER components. Comparison with a similar nearby mature forest (Agric. Forest Meteorol. 108 (2001) 183) indicates that clear‐cutting reduces GPP by two thirds but TER by only one third, transforming a strong forest sink into a source of CO2. Likewise, the loss of 50% of evapotranspiration (by the trees) leads to increased temperatures and thus reduced net radiation (by one third), and a 50% increase in sensible heat loss by the clear cut.  相似文献   

3.
Fluxes of carbon dioxide in the old-growth bilberry spruce forest in the European Taiga are measured by the eddy covariance technique. A carbon dioxide sink to the ecosystem was observed from April until September; the maximum net-exchange rate of carbon dioxide was recorded in July. During the cold period of the year from October to March, the biogenic flux of CO2 was directed from the forest canopy to the atmosphere. According to measurements at u* > 0.2, the total annual NEE was 219 g C m–2; the annual values of the ecosystem respiration R eco and the gross photosynthesis P gross were 483 and 966 g C m–2, respectively. The conclusion is that the old-growth bilberry spruce forest in the middle taiga subzone was the sink of carbon from the atmosphere during the year of observation.  相似文献   

4.
Nine years (2003–2011) of carbon dioxide (CO2) flux were measured at a black spruce forest in interior Alaska using the eddy covariance method. Seasonal and interannual variations in the gross primary productivity (GPP) and ecosystem respiration (RE) were associated primarily with air temperature: warmer conditions enhanced GPP and RE. Meanwhile, interannual variation in annual CO2 balance was controlled predominantly by RE, and not GPP. During these 9 years of measurement, the annual CO2 balance shifted from a CO2 sink to a CO2 source, with a 9‐year average near zero. The increase in autumn RE was associated with autumn warming and was mostly attributed to a shift in the annual CO2 balance. The increase in autumn air temperature (0.22 °C yr?1) during the 9 years of study was 15 times greater than the long‐term warming trend between 1905 and 2011 (0.015 °C yr?1) due to decadal climate oscillation. This result indicates that most of the shifts in observed CO2 fluxes were associated with decadal climate variability. Because the natural climate varies in a cycle of 10–30 years, a long‐term study covering at least one full cycle of decadal climate oscillation is important to quantify the CO2 balance and its interaction with the climate.  相似文献   

5.
Carbon sequestration in a high-elevation, subalpine forest   总被引:12,自引:0,他引:12  
We studied net ecosystem CO2 exchange (NEE) dynamics in a high‐elevation, subalpine forest in Colorado, USA, over a two‐year period. Annual carbon sequestration for the forest was 6.71 mol C m?2 (80.5 g C m?2) for the year between November 1, 1998 and October 31, 1999, and 4.80 mol C m?2 (57.6 g C m?2) for the year between November 1, 1999 and October 31, 2000. Despite its evergreen nature, the forest did not exhibit net CO2 uptake during the winter, even during periods of favourable weather. The largest fraction of annual carbon sequestration occurred in the early growing‐season; during the first 30 days of both years. Reductions in the rate of carbon sequestration after the first 30 days were due to higher ecosystem respiration rates when mid‐summer moisture was adequate (as in the first year of the study) or lower mid‐day photosynthesis rates when mid‐summer moisture was not adequate (as in the second year of the study). The lower annual rate of carbon sequestration during the second year of the study was due to lower rates of CO2 uptake during both the first 30 days of the growing season and the mid‐summer months. The reduction in CO2 uptake during the first 30 days of the second year was due to an earlier‐than‐normal spring warm‐up, which caused snow melt during a period when air temperatures were lower and atmospheric vapour pressure deficits were higher, compared to the first 30 days of the first year. The reduction in CO2 uptake during the mid‐summer of the second year was due to an extended drought, which was accompanied by reduced latent heat exchange and increased sensible heat exchange. Day‐to‐day variation in the daily integrated NEE during the summers of both years was high, and was correlated with frequent convective storm clouds and concomitant variation in the photosynthetic photon flux density (PPFD). Carbon sequestration rates were highest when some cloud cover was present, which tended to diffuse the photosynthetic photon flux, compared to periods with completely clear weather. The results of this study are in contrast to those of other studies that have reported increased annual NEE during years with earlier‐than‐normal spring warming. In the current study, the lower annual NEE during 2000, the year with the earlier spring warm‐up, was due to (1) coupling of the highest seasonal rates of carbon sequestration to the spring climate, rather than the summer climate as in other forest ecosystems that have been studied, and (2) delivery of snow melt water to the soil when the spring climate was cooler and the atmosphere drier than in years with a later spring warm‐up. Furthermore, the strong influence of mid‐summer precipitation on CO2 uptake rates make it clear that water supplied by the spring snow melt is a seasonally limited resource, and summer rains are critical for sustaining high rates of annual carbon sequestration.  相似文献   

6.
Carbon dioxide and methane exchange of a north-east Siberian tussock tundra   总被引:1,自引:0,他引:1  
Carbon dioxide, energy flux measurements and methane chamber measurements were carried out in an arctic wet tussock grassland located on a flood plane of the Kolyma river in NE Siberia over a summer period of 155 days in 2002 and early 2003. Respiration was also measured in April 2004. The study region is characterized by late thaw of the top soil (mid of June) and periodic spring floods. A stagnant water table below the grass canopy is fed by thawing of the active layer of permafrost and by flood water. The climate is continental with average daily temperature in the warmest months of 13°C (maximum temperature at midday: 28°C by the end of July), dry air (maximum vapour pressure deficit at midday: 28 hPa) and low rainfall of 50 mm during summer (July–September). Summer evaporation (July–September: 103 mm) exceeded rainfall by a factor of 2. The daily average Bowen ratio (H/LE) was 0.62 during the growing season. Net ecosystem CO2 uptake reached 10 μmol m−2 s−1 and was related to photon flux density (PFD) and vapour pressure deficit (VPD). The cumulative annual net carbon flux from the atmosphere to the terrestrial surface was estimated to be about −38 g C m−2 yr−1 (negative flux depicts net carbon sink). Winter respiration was extrapolated using the Lloyd and Taylor function. The net carbon balance is composed of a high rate of assimilation in a short summer and a fairly large but uncertain respiration mainly during autumn and spring. Methane flux (about 12 g C m−2 measured over 60 days) was 25% of C uptake during the same period of time (end of July to end of September). Assuming that CH4 was emitted only in summer, and taking the greenhouse gas warming potential of CH4 vs. CO2 into account (factor 23), the study site was a greenhouse gas source (at least 200 g Cequivalent m−2 yr−1). Comparing different studies in wetlands and tundra ecosystems as related to latitude, we expect that global warming would rather increase than decrease the CO2-C sink.  相似文献   

7.
This study estimates carbon balance in a mixed mature forest on sod-podzolic sandy-loamy soil (Albeluvisols sandy, the Prioksko-Terrasny Nature Reserve) and in a secondary deciduous forest at the Experimental Field Station of the Institute of Physicochemical and Biological Problems of Soil Sciences, Russian Academy of Sciences (gray forest loamy soil, Luvisols loamy). CO2 emissions from soils have been continuously measured every week since 1998. Net primary production was estimated in 2000–2014 by remote sensing using the normalized difference vegetation index. Long-term weather monitoring has revealed a distinctive trend toward increasing aridity of climate in the southern part of Moscow region in the observation period (1998–2014). Based on long-term ground-based and satellite monitoring data, this study shows that in the growing season, mixed and deciduous forests of the southern part of Moscow region are the sink of carbon with a mean flux of 41–112 g C m–2, depending on the contribution of root respiration. Taking into account the CO2 emissions from soils during the cold season, the forests are very likely to function as sources of atmospheric carbon at an amount of 30–100 g C m–2 yr–1, sometimes reaching very significant values of C flux (170–300 g C m–2 yr–1). In mature forest ecosystems, a significant influence on the quantitative estimate of the C balance is hampered by the CO2 emission activity from coarse woody debris, which can reach up to 14% of the total losses of C during the decomposition of soil organic matter in the mixed forest, which turns it into a persistent source of CO2 to the atmosphere. It is shown that the sink function of the forest ecosystems was more pronounced in dry years, whereas the excessive wetness diminishes their sink potential, turning the forests into sources of carbon dioxide.  相似文献   

8.
We used eddy covariance and biomass measurements to quantify the carbon (C) dynamics of a naturally regenerated longleaf pine/slash pine flatwoods ecosystem in north Florida for 4 years, July 2000 to June 2002 and 2004 to 2005, to quantify how forest type, silvicultural intensity and environment influence stand‐level C balance. Precipitation over the study periods ranged from extreme drought (July 2000–June 2002) to above‐average precipitation (2004 and 2005). After photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD) >1.5 kPa and air temperature <10 °C were important constraints on daytime half‐hourly net CO2 exchange (NEEday) and reduced the magnitude of midday CO2 exchange by >5 μmol CO2 m?2 s?1. Analysis of water use efficiency indicated that stomatal closure at VPD>1.5 kPa moderated transpiration similarly in both drought and wet years. Night‐time exchange (NEEnight) was an exponential function of air temperature, with rates further modulated by soil moisture. Estimated annual net ecosystem production (NEP) was remarkably consistent among the four measurement years (range: 158–192 g C m?2 yr?1). In comparison, annual ecosystem C assimilation estimates from biomass measurements between 2000 and 2002 ranged from 77 to 136 g C m?2 yr?1. Understory fluxes accounted for approximately 25–35% of above‐canopy NEE over 24‐h periods, and 85% and 27% of whole‐ecosystem fluxes during night and midday (11:00–15:00 hours) periods, respectively. Concurrent measurements of a nearby intensively managed slash pine plantation showed that annual NEP was three to four times greater than that of the Austin Cary Memorial Forest, highlighting the importance of silviculture and management in regulating stand‐level C budgets.  相似文献   

9.
We measured diurnal and wintertime changes in CO2 fluxes from soil and snow surfaces in a Japanese cool-temperate Quercus/Betula forest between December 1994 and May 1995. To evaluate the relationship between these winter fluxes and temperature, flux measurements were made with the open-flow infrared gas analyzer (IRGA) method rather than with the more commonly used closed chamber method or the snow CO2 profile method. The open-flow IRGA method proved to be more successful in measurements of winter CO2 fluxes than the two standard methods. Despite colder air temperatures, soil temperature profiles were greater than 0°C because of the thermal insulation effect of deep snowpack. This reveals that soil temperature is satisfactory for microbial respiration throughout the winter. Unfrozen soils under the snowpack showed neither diurnal nor wintertime trends in CO2 fluxes or in soil surface temperature, although there was a daily snow surface CO2 flux of 0.18–0.32 g m–2. By combining this with other reference data, Japanese cool-temperate forest soils in snowy regions can be estimated to emit < 100 g m–2 carbon over an entire winter, and this value accounts for < 15% of the annual emission. In the present study, when data for all winter fluxes were taken together, fluxes were most highly correlated with deep soil temperatures rather than the soil surface temperature. Such a high correlation can be attributed to the relatively increased respiration of the deep soil where the temperature was higher than the soil surface temperature. Thus, deeper soil temperature is a better predictor of winter CO2 fluxes in cold and snowy ecosystems.  相似文献   

10.
人工高效经营雷竹林CO2通量估算及季节变化特征   总被引:1,自引:0,他引:1  
陈云飞  江洪  周国模  杨爽  陈健 《生态学报》2013,33(11):3434-3444
利用涡度相关技术观测高效经营雷竹林生态系统的1a碳通量变化过程,初步计算分析了碳收支以及影响的环境因子.数据结果表明,雷竹林系统全年碳收支情况为碳汇,固碳能力小于毛竹林和杉木林,同时也小于水稻田和北方农田.全年净生态系统碳交换量(NEE)为-126.303Cg·m-2·a-1,生态系统呼吸(RE)为1108.845 Cg·m-2·a-1,生态系统总交换量(GEE)为-1235.15Cg·m-2·a-1.其中冬季(12月-2月)覆盖时为碳源,其余月份为碳汇.各月碳吸收量以11月最高,6月次之,呈双峰变化,碳排放量以1月为最高.计算全年平均固碳效率为11%,12-2月为负值,11月最高33%.生态系统呼吸呈单峰变化,以夏季最高,冬季覆盖提高地温后生态系统呼吸随之增加,全年RE受温度影响显著成指数关系.人工经营下温度是影响雷竹林CO2通量过程的主要因素,同时大量有机物覆盖增加了碳排放.  相似文献   

11.
How strong is the current carbon sequestration of an Atlantic blanket bog?   总被引:1,自引:0,他引:1  
Although northern peatlands cover only 3% of the land surface, their thick peat deposits contain an estimated one‐third of the world's soil organic carbon (SOC). Under a changing climate the potential of peatlands to continue sequestering carbon is unknown. This paper presents an analysis of 6 years of total carbon balance of an almost intact Atlantic blanket bog in Glencar, County Kerry, Ireland. The three components of the measured carbon balance were: the land‐atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) and the flux of dissolved organic carbon (DOC) exported in a stream draining the peatland. The 6 years C balance was computed from 6 years (2003–2008) of measurements of meteorological and eddy‐covariance CO2 fluxes, periodic chamber measurements of CH4 fluxes over 3.5 years, and 2 years of continuous DOC flux measurements. Over the 6 years, the mean annual carbon was ?29.7±30.6 (±1 SD) g C m?2 yr?1 with its components as follows: carbon in CO2 was a sink of ?47.8±30.0 g C m?2 yr?1; carbon in CH4 was a source of 4.1±0.5 g C m?2 yr?1 and the carbon exported as stream DOC was a source of 14.0±1.6 g C m?2 yr?1. For 2 out of the 6 years, the site was a source of carbon with the sum of CH4 and DOC flux exceeding the carbon sequestered as CO2. The average C balance for the 6 years corresponds to an average annual growth rate of the peatland surface of 1.3 mm yr?1.  相似文献   

12.
Carbon exchange by the terrestrial biosphere is thought to have changed since pre-industrial times in response to increasing concentrations of atmospheric CO2 and variations (anomalies) in inter-annual air temperatures. However, the magnitude of this response, particularly that of various ecosystem types (biomes), is uncertain. Terrestrial carbon models can be used to estimate the direction and size of the terrestrial responses expected, providing that these models have a reasonable theoretical base. We formulated a general model of ecosystem carbon fluxes by linking a process-based canopy photosynthesis model to the Rothamsted soil carbon model for biomes that are not significantly affected by water limitation. The difference between net primary production (NPP) and heterotrophic soil respiration (Rh) represents net ecosystem production (NEP). The model includes (i) multiple compartments for carbon storage in vegetation and soil organic matter, (ii) the effects of seasonal changes in environmental parameters on annual NEP, and (iii) the effects of inter-annual temperature variations on annual NEP. Past, present and projected changes in atmospheric CO2 concentration and surface air temperature (at different latitudes) were analysed for their effects on annual NEP in tundra, boreal forest and humid tropical forest biomes. In all three biomes, annual NEP was predicted to increase with CO2 concentration but to decrease with warming. As CO2 concentrations and temperatures rise, the positive carbon gains through increased NPP are often outweighed by losses through increased Rh, particularly at high latitudes where global warming has been (and is expected to be) most severe. We calculated that, several times during the past 140 years, both the tundra and boreal forest biomes have switched between being carbon sources (annual NEP negative) and being carbon sinks (annual NEP positive). Most recently, significant warming at high latitudes during 1988 and 1990 caused the tundra and boreal forests to be net carbon sources. Humid tropical forests generally have been a carbon sink since 1960. These modelled responses of the various biomes are in agreement with other estimates from either field measurements or geochemical models. Under projected CO2 and temperature increases, the tundra and boreal forests will emit increasingly more carbon to the atmosphere while the humid tropical forest will continue to store carbon. Our analyses also indicate that the relative increase in the seasonal amplitude of the accumulated NEP within a year is about 0–14% year?1 for boreal forests and 0–23% year?1 in the tundra between 1960 and 1990.  相似文献   

13.
The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall‐tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m?2 year?1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2‐eq m?2 year?1, thus providing a climate‐cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear‐cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall‐tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.  相似文献   

14.
The effects of rainfall events on soil CO2 fluxes were examined in a cool temperate Quercus/Betula forest in Japan. The soil CO2 fluxes were measured using an open-flow gas exchange system with an infrared gas analyzer in the snow-free season from August 1999 to November 2000. Soil CO2 flux showed no significant diurnal trend on days without rain. In contrast, rainfall events caused a significant increase in soil CO2 flux. To determine the effect of rainfall events and to evaluate more precisely the daily and annual soil carbon flux, we constructed a multiple polynomial regression model that included two variables, soil temperature and soil water content, using the soil CO2 flux data recorded on sunny days. Daily soil carbon fluxes on sunny days calculated by the model were almost the same as those determined by the field measurements. On the contrary, the fluxes measured on rainy days were significantly higher than those calculated daily from the soil carbon fluxes by the model. Annual soil carbon fluxes in 1999 and 2000 were estimated using models that both do and do not take rainfall effects into consideration. The result indicates that post-rainfall increases in soil CO2 flux represent approximately 16–21% of the annual soil carbon flux in this cool temperate deciduous forest.  相似文献   

15.
One of the main challenges to quantifying ecosystem carbon budgets is properly quantifying the magnitude of night‐time ecosystem respiration. Inverse Lagrangian dispersion analysis provides a promising approach to addressing such a problem when measured mean CO2 concentration profiles and nocturnal velocity statistics are available. An inverse method, termed ‘Constrained Source Optimization’ or CSO, which couples a localized near‐field theory (LNF) of turbulent dispersion to respiratory sources, is developed to estimate seasonal and annual components of ecosystem respiration. A key advantage to the proposed method is that the effects of variable leaf area density on flow statistics are explicitly resolved via higher‐order closure principles. In CSO, the source distribution was computed after optimizing key physiological parameters to recover the measured mean concentration profile in a least‐square fashion. The proposed method was field‐tested using 1 year of 30‐min mean CO2 concentration and CO2 flux measurements collected within a 17‐year‐old (in 1999) even‐aged loblolly pine (Pinus taeda L.) stand in central North Carolina. Eddy‐covariance flux measurements conditioned on large friction velocity, leaf‐level porometry and forest‐floor respiration chamber measurements were used to assess the performance of the CSO model. The CSO approach produced reasonable estimates of ecosystem respiration, which permits estimation of ecosystem gross primary production when combined with daytime net ecosystem exchange (NEE) measurements. We employed the CSO approach in modelling annual respiration of above‐ground plant components (c. 214 g C m?2 year?1) and forest floor (c. 989 g C m?2 year?1) for estimating gross primary production (c. 1800 g C m?2 year?1) with a NEE of c. 605 g C m?2 year?1 for this pine forest ecosystem. We conclude that the CSO approach can utilise routine CO2 concentration profile measurements to corroborate forest carbon balance estimates from eddy‐covariance NEE and chamber‐based component flux measurements.  相似文献   

16.
西南喀斯特地区轮作旱地土壤CO2通量   总被引:1,自引:0,他引:1  
房彬  李心清  程建中  王兵  程红光  张立科  杨放 《生态学报》2013,33(17):5299-5307
中国已承诺大幅降低单位GDP碳排放,农业正面临固碳减排的重任.西南喀斯特地区环境独特,旱地面积占据优势比例,土壤碳循环认识亟待加强.以贵州省开阳县玉米-油菜轮作旱地为研究对象,采用密闭箱-气相色谱法对整个轮作期土壤CO2释放通量进行了观测研究,结果表明:(1)整个轮作期旱地均表现为CO2的释放源.其中油菜生长季土壤CO2通量为(178.8±104.8)mg CO2·m-2·h-1,玉米生长季为(403.0±178.8) mg CO2·m-2·h-1,全年平均通量为(271.1±176.4) mg CO2·m-2·h-1,高于纬度较高地区的农田以及同纬度的次生林和松林;(2)CO2通量日变化同温度呈现显著正相关关系,季节变化与温度呈现显著指数正相关关系,并受土壤湿度的影响,基于大气温度计算得出的Q10为2.02,高于同纬度松林以及低纬度的常绿阔叶林;(3)CO2通量与土壤pH存在显著线性正相关关系,显示出土壤pH是研究区旱地土壤呼吸影响因子之一.  相似文献   

17.
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010–2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon–climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.  相似文献   

18.
The high-arctic environment is an environment where the consequences of global warming may be significant. In this paper we report on findings on carbon dioxide and water vapour fluxes above a sedge-dominated fen at Zackenberg (74°28′N, 20°34′ W) in The National Park of North and East Greenland. Eddy covariance measurements were initiated at the start of the growing season and terminated shortly before its end lasting 45 days. The net CO2 flux during daytime reaches a high of 10 μmol m–2s–1, and around the summer solstice, net CO2 assimilation occurred at midnight, resulting in net carbon gain during the night. The measured carbon dioxide fluxes compare well to estimates based on the photosynthesis model by Collatz et al. (1991 ). The total growing-season net ecosystem CO2 exchange was estimated to be 96 g C m–2 based on the carbon dioxide model and micrometeorological data. Finally, the combined CO2 assimilation and soil respiration models are used for examining the dependence of the carbon dioxide budget on temperature. The ecosystem is found to function optimally given the present temperature conditions whereas either an increase or a decrease in temperature would reduce the ecosystem CO2 accumulation. An increase in temperature by 5 °C would turn the ecosystem into a carbon dioxide source.  相似文献   

19.
Seven years of carbon dioxide flux measurements indicate that a ~90‐year‐old spruce dominated forest in Maine, USA, has been sequestering 174±46 g C m?2 yr?1 (mean±1 standard deviation, nocturnal friction velocity (u*) threshold >0.25 m s?1). An analysis of monthly flux anomalies showed that above‐average spring and fall temperatures were significantly correlated with greater monthly C uptake while above‐average summer temperatures were correlated with decreased net C uptake. Summer months with significantly drier or wetter soils than normal were also characterized by lower rates of C uptake. Years with above‐average C storage were thus typically characterized by warmer than average spring and fall temperatures and adequate summer soil moisture. Environmental and forest–atmosphere flux data recorded from a second tower surrounded by similar forest, but sufficiently distant that flux source regions (‘footprints’), did not overlap significantly showed almost identical temperature and solar radiation conditions, but some differences in energy partitioning could be seen. Half‐hourly as well as integrated (annual) C exchange values recorded at the separate towers were very similar, with average annual net C uptake differing between the two towers by <6%. Interannual variability in net C exchange was found to be much greater than between tower variability. Simultaneous measurements from two towers were used to estimate flux data uncertainty from a single tower. Carbon‐flux model parameters derived independently from each flux tower data set were not significantly different, demonstrating that flux towers can provide a robust method for establishing C exchange model parameters.  相似文献   

20.
Wetlands are important sources of methane (CH4) and sinks of carbon dioxide (CO2). However, little is known about CH4 and CO2 fluxes and dynamics of seasonally flooded tropical forests of South America in relation to local carbon (C) balances and atmospheric exchange. We measured net ecosystem fluxes of CH4 and CO2 in the Pantanal over 2014–2017 using tower‐based eddy covariance along with C measurements in soil, biomass and water. Our data indicate that seasonally flooded tropical forests are potentially large sinks for CO2 but strong sources of CH4, particularly during inundation when reducing conditions in soils increase CH4 production and limit CO2 release. During inundation when soils were anaerobic, the flooded forest emitted 0.11 ± 0.002 g CH4‐C m?2 d?1 and absorbed 1.6 ± 0.2 g CO2‐C m?2 d?1 (mean ± 95% confidence interval for the entire study period). Following the recession of floodwaters, soils rapidly became aerobic and CH4 emissions decreased significantly (0.002 ± 0.001 g CH4‐C m?2 d?1) but remained a net source, while the net CO2 flux flipped from being a net sink during anaerobic periods to acting as a source during aerobic periods. CH4 fluxes were 50 times higher in the wet season; DOC was a minor component in the net ecosystem carbon balance. Daily fluxes of CO2 and CH4 were similar in all years for each season, but annual net fluxes varied primarily in relation to flood duration. While the ecosystem was a net C sink on an annual basis (absorbing 218 g C m?2 (as CH4‐C + CO2‐C) in anaerobic phases and emitting 76 g C m?2in aerobic phases), high CH4 effluxes during the anaerobic flooded phase and modest CH4 effluxes during the aerobic phase indicate that seasonally flooded tropical forests can be a net source of radiative forcings on an annual basis, thus acting as an amplifying feedback on global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号